Skip to main content
Log in

Population dynamics of Meloidogyne incognita on cucumber grafted onto the Cucurbita hybrid RS841 or ungrafted and yield losses under protected cultivation

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The influence of the squash hybrid RS841 rootstock (Cucurbita maxima x C. moschata) on population dynamics of Meloidogyne incognita and yield of cucumber cv. Dasher II was assessed during 2013 and 2014 in a plastic greenhouse. In addition, the relationship between ecophysiological parameters (plant water status, gas exchange, and leaf reflectance) and Pi and cucumber yield were also estimated in 2013. Nematode densities were determined at the beginning (Pi) and at the end (Pf) of each crop, and the relationship between these parameters was used to estimate the maximum multiplication rate (a), the maximum population density (M) and the equilibrium density (E) per grafted and ungrafted cucumber and cropping season. Moreover, the relationship between the multiplication rate (Pf/Pi) and Pi was compared between grafted and ungrafted cucumber per cropping season. Finally, the relative yield of grafted or ungrafted cucumber was plotted against Pi to determine the tolerance limit (T) and the minimum relative yield (m) by the Seinhorst damage function model. Values of a, M and E in grafted cucumber were higher than in ungrafted one irrespective of the cropping season. These results were supported by comparing the relationship between Pf/Pi and Pi between grafted and ungrafted cucumber. The relationship between Pi and yield fitted the Seinhorst damage function. The values of T and m did not differ between grafted and ungrafted each year. Predawn water potential, net photosynthetic rate, and leaf chlorophyll index decreased with increasing Pi. In addition, relative yield was related to variation in net photosynthetic rate and the leaf chlorophyll index. Under the conditions of this study, RS841 rootstock was neither resistant nor tolerant to M. incognita.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrios, G. N. (2005). Plant pathology. Elsevier academic press.

  • Ahmed, N., Abbasi, M. W., Shaukat, S. S., & Zaki, M. J. (2009). Physiological changes in leaves of mungbean plants infected with Meloidogyne javanica. Phytopathologia Mediterranea, 48(2), 262–268.

    Google Scholar 

  • Audebert, A., Coyne, D. L., Dingkuhn, M., & Plowright, R. A. (2000). The influence of cyst nematodes (Heterodera sacchari) and drought on water relations and growth of upland rice in Côte d’Ivoire. Plant and Soil, 220(1–2), 235–242.

    Article  CAS  Google Scholar 

  • Barker, K. R., Shoemaker, P. B., & Nelson, L. A. (1976). Relationships of initial population densities of Meloidogyne incognita and M. hapla to yield of tomato. Journal of Nematology, 8(3), 232–239.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cansev, A., & Ozgur, M. (2010). Grafting cucumber seedlings on Cucurbita spp.: comparison of different grafting methods, scions and their performance. Journal of Food Agriculture and Environment, 8, 804–809.

    Google Scholar 

  • Cortada, L., Sorribas, F. J., Ornat, C., Kaloshian, I., & Verdejo-Lucas, S. (2008). Variability in infection and reproduction of Meloidogyne javanica on tomato rootstocks with the Mi resistance gene. Plant Pathology, 57(6), 1125–1135.

    Article  CAS  Google Scholar 

  • Datt, B. (1998). Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a + b, and total carotenoid content in eucalyptus leaves. Remote Sensing of Environment, 66(2), 111–121.

    Article  Google Scholar 

  • Davis, A. R., Perkins-Veazie, P., Sakata, Y., López-Galarza, S., Maroto, J. V., Lee, S. G., Huh, Y. C., Sun, Z., Miguel, A., King, S., Cohen, R., & Lee, J. R. (2008). Cucurbit grafting. Critical Reviews in Plant Sciences, 27(1), 50–74.

    Article  Google Scholar 

  • Di Vito, M., & Greco, N. (1988). The relationship between initial population densities of Meloidogyne artiellia and yield of winter and spring chickpea. Nematologia Mediterranea, 16, 163–166.

    Google Scholar 

  • Edelstien, M. (2004). Grafting vegetables-crop plants: pros and cons. Acta Horticulture., 659, 235–237.

    Article  Google Scholar 

  • FAOSTAT (2016). Food and agriculture organization of the united nations statistics http://faostat.fao.org. Accessed 25 May 2016.

  • Ferris, H. (1985). Density-dependent nematode seasonal multiplication rates and overwinter survivorship: a critical point model. Journal of Nematology, 17(2), 93–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giné, A., Carrasquilla, M., Martínez-Alonso, M., Gaju, N., & Sorribas, F. J. (2016). Characterization of soil suppressiveness to root-knot nematodes in organic horticulture in plastic greenhouse. Frontiers in plant science, 7.

  • Giné, A., López-Gómez, M., Vela, M. D., Ornat, C., Talavera, M., Verdejo-Lucas, S., & Sorribas, F. J. (2014). Thermal requirements and population dynamics of root-knot nematodes on cucumber and yield losses under protected cultivation. Plant Pathology, 63(6), 1446–1453.

    Article  Google Scholar 

  • Gisbert, C., Sorribas, F. J., Martínez Perez, E. M., Gammoudi, N., Bernat, G., & Picó, B. (2014). Grafting melons onto potential Cucumis spp. rootstocks. In 2nd Annual Conference COST Action FA1204-Programme and Book of abstracts (pp. 57).

  • Goreta Ban, S., Dumičić, G., Raspudić, E., Vuletin Selak, G., & Ban, D. (2014). Growth and yield of grafted cucumbers in soil infested with root-knot nematodes. Chilean journal of agricultural research, 74(1), 29–34.

    Article  Google Scholar 

  • Guan, W., Zhao, X., Dickson, D. W., Mendes, M. L., & Thies, J. (2014). Root-knot nematode resistance, yield, and fruit quality of specialty melons grafted onto Cucumis metulifer. Hortscience, 49(8), 1046–1051.

    Google Scholar 

  • Hussey, R. A., & Barker, K. R. (1973). A comparison ofmethods of collecting inocula of Meloidogyne spp. including a new technique. Plant Disease Reporter, 57, 1025–1028.

    Google Scholar 

  • Khan, M. R., & Haque, Z. (2011). Soil application of Pseudomonas fluorescens and Trichoderma harzianum reduces root-knot nematode, Meloidogyne incognita, on tobacco. Phytopathologia Mediterranea, 50(2), 257–266.

    CAS  Google Scholar 

  • Kim, D. G., & Ferris, H. (2002). Relationship between crop losses and initial population densities of Meloidogyne arenaria in winter-grown oriental melon in Korea. Journal of Nematology, 34(1), 43–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  • King, S. R., Davis, A. R., Zhang, X., & Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127(2), 106–111.

    Article  Google Scholar 

  • Kokalis-Burelle, N., Bausher, M. G., & Rosskopf, E. N. (2009). Greenhouse evaluation of capsicum rootstocks for management of Meloidogyne incognita on grafted bell pepper. Nematropica, 39(1), 121–132.

    Google Scholar 

  • Kokalis-Burelle, N., & Rosskopf, E. N. (2011). Microplot evaluation of rootstocks for control of Meloidogyne incognita on grafted tomato, muskmelon, and watermelon. Journal of Nematology, 43(3–4), 166–171.

    PubMed  PubMed Central  Google Scholar 

  • Lee, J. M., Kubota, C., Tsao, S. J., Bie, Z., Echevarria, P. H., Morra, L., & Oda, M. (2010). Current status of vegetable grafting: diffusion, grafting techniques, automation. Scientia Horticulturae, 127(2), 93–105.

    Article  Google Scholar 

  • Lee, J. M., & Oda, M. (2010). Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews, 28, 61–124.

    CAS  Google Scholar 

  • Liu, B., Ren, J., Zhang, Y., An, J., Chen, M., Chen, H., Xu, C., & Ren, H. (2015). A new grafted rootstock against root-knot nematode for cucumber, melon, and watermelon. Agronomy for Sustainable Development, 35(1), 251–259.

    Article  Google Scholar 

  • López-Gómez, M., Giné, A., Vela, M. D., Ornat, C., Sorribas, F. J., Talavera, M., & Verdejo-Lucas, S. (2014). Damage functions and thermal requirements of Meloidogyne javanica and Meloidogyne incognita on watermelon. Annals of Applied Biology, 165(3), 466–473.

    Article  Google Scholar 

  • López-Gómez, M., Flor-Peregrín, E., Talavera, M., Sorribas, F. J., & Verdejo-Lucas, S. (2015). Population dynamics of Meloidogyne javanica and its relationship with the leaf chlorophyll content in zucchini. Crop Protection, 70, 8–14.

    Article  Google Scholar 

  • López-Gómez, M., Talavera, M., & Verdejo-Lucas, S. (2016). Differential reproduction of Meloidogyne incognita and M. javanica in watermelon cultivars and cucurbit rootstocks. Plant Pathology, 65(1), 145–153.

    Article  Google Scholar 

  • Loveys, B. R., & Bird, A. F. (1973). The influence of nematodes on photosynthesis in tomato plants. Physiological Plant Pathology, 3(4), 525–529.

    Article  CAS  Google Scholar 

  • MAGRAMA (2013). Ministerio de Agricultura, Alimentación y Medio Ambiente, Anuario de estadística. Superficies y producciones de cultivos. http://www.magrama.gob.es/es/estadistica/temas/ publicaciones/anuario-de-estadistica/2012. Accessed 25 May 2016.

  • Maršić, N. K., & Jakše, M. (2010). Growth and yield of grafted cucumber (Cucumis sativus L.) on different soilless substrates. Journal of Food, Agriculture & Environment, 8(2), 654–658.

    Google Scholar 

  • Melakeberhan, H. (2003). Physiological interactions between nematodes and their host plant. In Z. X. Chen, S. Y. Chen, & D. W. Dickson (Eds.), Nematology advances and perspectives, nematode management and utilization (pp. 771–794). Wallingford: CAB International.

    Google Scholar 

  • Melakeberhan, H., Brooked, R. C., Webster, J. M., & d’Auria, J. M. (1985). The influence of Meloidogyne incognita on the growth, physiology and nutrient content of Phaseolus vulgaris. Physiological Plant Pathology, 26(3), 259–268.

    Article  CAS  Google Scholar 

  • Munera, M., Giné, A., Pocurull, M., Picó, B., Gisbert, C., & Sorribas, F.J. (2014). Response of potential cucurbit rootstocks against Meloidogyne spp. In 2nd Annual Conference COST Action FA1204-Programme and Book of abstracts (pp. 47).

  • Noling, J. W., & Ferris, H. (1986). Influence of alfalfa plant growth on the multiplication rates and ceiling population density of Meloidogyne hapla. Journal of Nematology, 18(4), 505–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ornat, C., Verdejo-Lucas, S., & Sorribas, F. J. (1997). Effect of the previous crop on population densities of Meloidogyne javanica and yield of cucumber. Nematropica, 27, 85–90.

    Google Scholar 

  • Oka, Y., Offenbach, R., & Pivonia, S. (2004). Pepper rootstock graft compatibility and response to Meloidogyne javanica and M. incognita. Journal of Nematology, 36(2), 137–141.

    PubMed  PubMed Central  Google Scholar 

  • Pavlou, G. C., Vakalounakis, D. J., & Ligoxigakis, E. K. (2002). Control of root and stem rot of cucumber, caused by Fusarium oxysporum f. Sp. radicis-cucumerinum, by grafting onto resistant rootstocks. Plant Disease, 86(4), 379–338.

    Article  Google Scholar 

  • Picó, B., Esteras, C., Martinez, E., Munera, M., Giné, A., Sorribas, F.J., & Gisbert, C. (2013) New Cucumis spp. resources for grafting melons. In 1st Annual Conference COST Action FA1204-Programme and Book of abstracts. (pp. 24).

  • Ploeg, A. T., & Phillips, M. S. (2001). Damage to melon (Cucumis melo L.) cv. Durango by Meloidogyne incognita in southern California. Nematology, 3(2), 151–157.

    Article  Google Scholar 

  • Ros, C., Guerrero, M. M., Martiinez, M. A., Lacasa, A., & Bello, A. (2006). Integrated management of Meloidogyne resistance in sweet pepper in greenhouses. IOBC WPRS BULLETIN, 29(4), 319.

    Google Scholar 

  • Schomaker, C. H., & Been, T. H. (2006). Distribution patterns and sampling. In R. N. Perry & M. Moens (Eds.), Plant nematology (pp. 302–326). St. Albans: CAB International.

    Google Scholar 

  • Seinhorst, J. W. (1965). The relation between nematode density and damage to plants. Nematologica, 11(1), 137–154.

    Article  Google Scholar 

  • Seinhorst, J. W. (1967). The relationship between population increase and population density in plant parasitic nematodes. III. Definition of terms host, host status and resistance. IV. The influence of external conditions on the regulation of population density. Nematologica, 13(1), 429–442.

    Article  Google Scholar 

  • Seinhorst, J. W. (1970). Dynamics of population of plant parasitic nematodes. Annual Review of Phytopathology, 8(1), 131–156.

    Article  Google Scholar 

  • Sigüenza, C., Schochow, M., Turini, T., & Ploeg, A. (2005). Use of Cucumis metuliferus as a rootstock for melon to manage Meloidogyne incognita. Journal of Nematology, 37(3), 276–280.

    PubMed  PubMed Central  Google Scholar 

  • Strajnar, P., Širca, S., Urek, G., Šircelj, H., Železnik, P., & Vodnik, D. (2012). Effect of Meloidogyne ethiopica parasitism on water management and physiological stress in tomato. European Journal of Plant Pathology, 132(1), 49–57.

    Article  Google Scholar 

  • Talavera, M., Sayadi, S., Chirosa-Ríos, M., Salmerón, T., Flor-Peregrín, E., & Verdejo-Lucas, S. (2012). Perception of the impact of root-knot nematode-induced diseases in horticultural protected crops of South-Eastern Spain. Nematology, 14(5), 517–527.

    Article  Google Scholar 

  • Talavera, M., Verdejo-Lucas, S., Ornat, C., Torres, J., Vela, M. D., Macias, F. J., Cortada, L., Arias, D. J., Valero, J., & Sorribas, F. J. (2009). Crop rotations with Mi gene resistant and susceptible tomato cultivars for management of root-knot nematodes in plastic-houses. Crop Protection, 28(8), 662–667.

    Article  Google Scholar 

  • Thies, J. A., Ariss, J. J., Hassell, R. L., Levi, A., Sari, N., Solmaz, I., & Aras, V. (2012). Resistant rootstocks for managing root-knot nematodes (Meloidogyne incognita) in grafted watermelon and melon. In Cucurbitaceae 2012. Proceedings of the Xth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae. (pp. 202–211). University of Cukurova, Ziraat Fakultesi.

  • Thies, J. A., Ariss, J. J., Hassell, R. L., Olson, S., Kousik, C. S., & Levi, A. (2010). Grafting for management of southern root-knot nematode, Meloidogyne incognita, in watermelon. Plant Disease, 94(10), 1195–1199.

    Article  Google Scholar 

  • Thies, J. A., Buckner, S., Horry, M., Hassell, R., & Levi, A. (2015). Influence of Citrullus lanatus var. citroides rootstocks and their F1 hybrids on yield and response to root-knot nematode, Meloidogyne incognita, in grafted watermelon. Hortscience, 50(1), 9–12.

    CAS  Google Scholar 

  • USDA (2015). Description of Commercial Cucurbit Rootstocks. “http://www.vegetablegrafting.or/wp/wp-content/uploads/2015/02/usda-scri-cucurbit-rootstock-table-feb-15.pdf”. Accessed 30 May 2016.

  • Vela, M. D., Giné, A., López-Gómez, M., Sorribas, F. J., Ornat, C., Verdejo-Lucas, S., & Talavera, M. (2014). Thermal time requirements of root-knot nematodes on zucchini-squash and population dynamics with associated yield losses on spring and autumn cropping cycles. European Journal of Plant Pathology, 140(3), 481–490.

    Article  CAS  Google Scholar 

  • Verdejo-Lucas, S., Cortada, L., Sorribas, F. J., & Ornat, C. (2009). Selection of virulent populations of Meloidogyne javanica by repeated cultivation of Mi resistance gene tomato rootstocks under field conditions. Plant Pathology, 58(5), 990–998.

    Article  Google Scholar 

  • Verdejo-Lucas, S., & Sorribas, F. J. (2008). Resistance response of the tomato rootstock SC 6301 to Meloidogyne javanica in a plastic house. European Journal of Plant Pathology, 121(1), 103–107.

    Article  Google Scholar 

  • Whitehead, A. G., & Hemming, J. R. (1965). A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Annual of Applied Biology, 55(1), 25–38.

    Article  Google Scholar 

  • Zeck, W. (1971). Rating scheme for field evaluation of root-knot nematode infestations. Pflanzenschutz Nachrichten, 24, 141–144.

    Google Scholar 

Download references

Acknowledgments

This work was partially funded by INIA project RTA2010-00017-C02 and FEDER support from the European Union and MINECO project AGL2013-49040-C2-1-R. Authors are thankful to Miriam Pocurull, Sheila Alcalá, Maria Julià and Miquel Massip for technical assistance in the field and laboratory work and Alba Valero for revision of the written English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Sorribas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giné, A., González, C., Serrano, L. et al. Population dynamics of Meloidogyne incognita on cucumber grafted onto the Cucurbita hybrid RS841 or ungrafted and yield losses under protected cultivation. Eur J Plant Pathol 148, 795–805 (2017). https://doi.org/10.1007/s10658-016-1135-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1135-z

Keywords

Navigation