Skip to main content
Log in

Autophagy is induced in haustorial mother cells of Puccinia triticina and is necessary for plant infection

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Autophagy is a highly conserved pathway that mediates bulk degradation of cellular components in lysosomes/vacuoles and plays an important role in filamentous fungi by impacting growth, morphology and development. However, in leaf rust, the role of autophagy is poorly understood. In this study, we identified the structure of autophagy in leaf rust infection structures by using transmission electron microscopy (TEM). The results suggest that autophagy can be strongly induced in the haustorium mother cell (HMC) but did not occur in other special infection structures, such as the appressorium, substomatal vesicle and haustorial. Applying the autophagy inhibitor 3-mehyladenine (3-MA) to leaf rust resulted in significant arrest of mycelial growth and delays in leaf rust infection. These results suggest that autophagy can be induced in HMC and is important for fungal infection of wheat. This research will help us to expand our understanding of the physiological functions of autophagy in filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ashford, T. P., & Porter, K. R. (1962). Cytoplasmic components in hepatic cell lysosomes. The Journal of Cell Biology, 12, 198–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aubert, S., Gout, E., Bligny, R., Marty-Mazars, D., Barrieu, F., Alabouvette, J., Marty, F., & Douce, R. (1996). Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. The Journal of Cell Biology, 133, 1251–1263.

    Article  CAS  PubMed  Google Scholar 

  • Bassham, D. C., Laporte, M., Marty, F., Moriyasu, Y., Ohsumi, Y., Olsen, L. J., & Yoshimoto, K. (2006). Autophagy in development and stress responses of plants. Autophagy, 2, 2–11.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez, M. G., Master, S. S., Singh, S. B., Taylor, G. A., Colombo, M. I., & Deretic, V. (2006). Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell, 119, 753–766.

    Article  Google Scholar 

  • Howard, R. J., & Valent, B. (1996). Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annual Review of Microbiology, 50, 491–512.

    Article  CAS  PubMed  Google Scholar 

  • Kikuma, T., Ohneda, M., Arioka, M., & Kitamoto, K. (2006). Functional analysis of the ATG8 homologue Aoatg8 and role of autophagy in differentiation and germination in Aspergillus oryzae. Eukaryotic Cell, 5, 1328–1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky, D. J. (2005). The molecular machinery of autophagy: unanswered questions. Journal of Cell Science, 118, 7–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky, D. J. (2007). Autophagy: from phenomenology to molecular understanding in less than a decade. Nature Reviews Molecular Cell Biology, 8, 931–937.

    Article  CAS  PubMed  Google Scholar 

  • Levine, B., & Klionsky, D. J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental Cell, 6, 463–477.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X. H., Lu, J. P., & Lin, F. C. (2007a). Autophagy during conidiation, conidial germination and turgor generation in Magnaporthe grisea. Autophagy, 3, 472–473.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X. H., Lu, J. P., Zhang, L., Dong, B., Min, H., & Lin, F. C. (2007b). Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryotic Cell, 6, 997–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, G., Hou, C. Y., & Wang, D. M. (2010). Calcium influx is required for the initiation of the hypersensitive response of Triticum aestivum to Puccinia recondita f.sp. tritici. Physiological and Molecular Plant Pathology, 74, 267–273.

    Article  CAS  Google Scholar 

  • Lu, J. P., Liu, X. H., Feng, X. X., Min, H., & Lin, F. C. (2009). An autophagy gene, MgATG5, is required for cell differentiation and pathogenesis in Magnaporthe oryzae. Current Genetics, 55, 461–473.

    Article  CAS  PubMed  Google Scholar 

  • Mizushima, N. (2007). Autophagy: process and function. Genes & Development, 21, 2861–2873.

    Article  CAS  Google Scholar 

  • Panwar, V., McCallum, B., & Bakkeren, G. (2013). Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus. Plant Molecular Biology, 81, 595–608.

    Article  CAS  PubMed  Google Scholar 

  • Pinan-Lucarré, B., Paoletti, M., Dementhon, K., Coulary-Salin, B., & Clavé, C. (2003). Autophagy is induced during cell death by incompatibility and is essential for differentiation in the filamentous fungus Podospora anserina. Molecular Microbiology, 47, 321–333.

    Article  PubMed  Google Scholar 

  • Pinan-Lucarré, B., Balguerie, A., & Clavé, C. (2005). Accelerated cell death in Podospora autophagy mutants. Eukaryotic Cell, 4, 1765–1774.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollack, J. K., Harris, S. D., & Marten, M. R. (2009). Autophagy in filamentous fungi. Fungal Genetics and Biology, 46, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Rohringer, R., Kim, W. K., Samborski, D. J., & Howes, N. K. (1977). Calcofluor: an optical brightener for fluorescence microscopy of fungal plant parasites in leaves. Phytopathology, 67, 808–810.

    Article  Google Scholar 

  • Rose, T. L., Bonneau, L., Marty-Mazars, C., Der, D., & Marty, F. (2006). Starvation-induced expression of autophagy-related genes in Arabidopsis. Biology of the Cell, 98, 53–67.

    Article  CAS  PubMed  Google Scholar 

  • Seay, M., Patel, S., & Dinesh-Kumar, S. P. (2006). Autophagy and plant innate immunity. Cellular Microbiology, 8, 899–906.

    Article  CAS  PubMed  Google Scholar 

  • Seglen, P. O., & Gordon, P. B. (1982). 3-Methyladenine: specific inhibitor of autophagic lysosomal protein degradation in isolated rat hepatocytes. The Proceedings of the National Academy of Sciences USA, 79, 1889–1892.

    Article  CAS  Google Scholar 

  • Staples, R. C. (2001). Nutrients for a rust fungus: the role of haustoria. Trends in Plant Science, 6, 496–498.

    Article  CAS  PubMed  Google Scholar 

  • Szabo, L. J., & Bushnell, W. R. (2001). Hidden robbers: the role of fungal haustoria in parasitism of plants. The Proceedings of the National Academy of Sciences USA, 98, 7654–7655.

    Article  CAS  Google Scholar 

  • Takeshige, K., Baba, M., Tsuboi, S., Noda, T., & Ohsumi, Y. (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. The Journal of Cell Biology, 119, 301–311.

    Article  CAS  PubMed  Google Scholar 

  • Talbot, N. J., & Kershaw, M. J. (2009). The emerging role of autophagy in plant pathogen attack and host defence. Current Opinion in Plant Biology, 12, 444–450.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, A. R., & Vierstra, R. D. (2005). Autophagic recycling: lessons from yeast help define the process in plants. Current Opinion in Plant Biology, 8, 165–173.

    Article  CAS  PubMed  Google Scholar 

  • Tucker, S. L., & Talbot, N. J. (2001). Surface attachment and prepenetration stage development by plant pathogenic fungi. Annual Review of Phytopathology, 39, 385–417.

    Article  CAS  PubMed  Google Scholar 

  • Veneault-Fourrey, C., Barooah, M., Egan, M., Wakley, G., & Talbot, N. J. (2006). Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science, 312, 580–583.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, Y., Contento, A. L., Nguyen, P. Q., & Bassham, D. C. (2007). Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiology, 143, 291–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yorimitsu, T., & Klionsky, D. J. (2005). Autophagy: molecular machinery for self-eating. Cell Death and Differentiation, 12, 1542–1552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No.31171472), the Natural Science Foundation of Hebei Province (No. C2012204045) and the Science and Technology research Project of Colleges and Universities of Hebei Province (No. Q2012097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Mei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Open access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Tian, D., Shi, C. et al. Autophagy is induced in haustorial mother cells of Puccinia triticina and is necessary for plant infection. Eur J Plant Pathol 147, 833–843 (2017). https://doi.org/10.1007/s10658-016-1047-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1047-y

Keywords

Navigation