Skip to main content

Advertisement

Log in

Molecular characterization of lipoxygenase genes and their expression analysis against biotic and abiotic stresses in Panax ginseng

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Lipoxygenase (LOX) belongs to a family of non-heme-iron-containing fatty acid dioxygenases that are widely distributed in plants and animals. LOX involved in the synthesis of jasmonic acid and six-carbon (C6) volatiles which is necessary for plant growth and responses to a wide range of biotic and abiotic stresses. We have isolated and characterized LOX cDNA clones from Panax ginseng Meyer. From their deduced amino acid sequences, two diverse classes of 9-LOX (LOX1, LOX2, and LOX3) and 13-LOX (LOX4, LOX5) are defined in P. ginseng. A GenBank Blast X search revealed that the deduced amino acid of PgLOXs share a high degree of homology with LOX from other plants and mammals especially in three distinct motifs; motif1 harboring iron binding regions, motif2 and motif3. Chloroplast localization was predicted for PgLOX5. PgLOXs displayed organ-specific expression, highly expressed in aerial parts of the plant such as 3-year old flower, stem and leaf tissues. PgLOXs mRNAs were elevated strongly by bacterial infection. Expression of PgLOXs was differentially induced in ginseng not only by mechanical damage and methyl jasmonate but also after exposure to withholding water. Ginseng 13-LOXs positively respond to wounding that may involve in production of C6 volatiles and jasmonic acid at the wounded sites. However, the higher expression of PgLOX3 by water deficit and 82 % of the nucleotide sequence identity with the EST from severe drought-stressed leaves of Populus (CU229089.1) at +6371 bp downstream of PgLOX3 genomic DNA structure can suggest drought tolerance role for PgLOX3. Ginseng LOX genes have different expression pattern which may suggest different specific function against various environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AOC:

allene oxide cyclase

AOS:

allene oxide synthase

EST:

expressed sequence tag

HPL:

hydroperoxide lyase

13-HPOD:

(13S)-hydroperoxyoctadecadienoic acid

9-HPOD:

(9S)-hydroperoxyoctadecadienoic acid

IBA:

indole-3-butyric acid

JA:

jasmonic acid

LOX:

lipoxygenase

MJ:

methyl jasmonate

OPDA:

(9S,13S)-12-oxo phytodienoic acid

Pst:

Pseudomonas syringae pv tomato strain DC3000

PUFAs:

polyunsaturated fatty acids

RT-PCR:

reverse transcriptase-polymerase chain reaction.

References

  • Andreou, A., & Feussner, I. (2009). Lipoxygenases–structure and reaction mechanism. Phytochemistry, 70(13), 1504–1510.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., … Noble, W. S. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic acids research, gkp335.

  • Bate, N. J., & Rothstein, S. J. (1998). C6‐volatiles derived from the lipoxygenase pathway induce a subset of defense‐related genes. The Plant Journal, 16(5), 561–569.

    Article  CAS  PubMed  Google Scholar 

  • Blée, E., & Joyard, J. (1996). Envelope membranes from spinach chloroplasts are a site of metabolism of fatty acid hydroperoxides. Plant Physiology, 110(2), 445–454.

    PubMed  PubMed Central  Google Scholar 

  • Chen, G., Hackett, R., Walker, D., Taylor, A., Lin, Z., & Grierson, D. (2004). Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiology, 136(1), 2641–2651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbin, J. A., Evans, J. H., Landgraf, K. E., & Falke, J. J. (2007). Mechanism of specific membrane targeting by C2 domains: localized pools of target lipids enhance Ca2+ affinity. Biochemistry, 46(14), 4322–4336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croft, K. P., Juttner, F., & Slusarenko, A. J. (1993). Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiology, 101(1), 13–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dabbou, S., Brahmi, F., Selvaggini, R., Chehab, H., Dabbou, S., Taticchi, A., … Hammami, M. (2011). Contribution of irrigation and cultivars to volatile profile and sensory attributes of selected virgin olive oils produced in Tunisia. International Journal of Food Science & Technology, 46(9), 1964–1976.

  • De León, I. P., Sanz, A., Hamberg, M., & Castresana, C. (2002). Involvement of the Arabidopsisα‐DOX1 fatty acid dioxygenase in protection against oxidative stress and cell death. The Plant Journal, 29(1), 61–72.

    Article  PubMed  Google Scholar 

  • Devi Balusamy, S. R., Rahimi, S., Sukweenadhi, J., Kim, Y. J., Yang, D. C. (2015). Exogenous methyl jasmonate prevents necrosis caused by mechanical wounding and increased terpenoid biosynthesis in Panax ginseng. Plant Cell, Tissue and Organ Culture, 123(2), 341–348.

  • Emanuelsson, O., Nielsen, H., & Von Heijne, G. (1999). ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science, 8(05), 978–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feussner, I., & Kindl, H. (1992). A lipoxygenase is the main lipid body protein in cucumber and soybean cotyledons during the stage of triglyceride mobilization. FEBS Letters, 298(2), 223–225.

    Article  CAS  PubMed  Google Scholar 

  • Feussner, I., & Kindl, H. (1994). Particulate and soluble lipoxygenase isoenzymes. Planta, 194(1), 22–28.

    Article  CAS  Google Scholar 

  • Feussner, I., & Wasternack, C. (2002). The lipoxygenase pathway. Annual Review of Plant Biology, 53(1), 275–297.

    Article  CAS  PubMed  Google Scholar 

  • Feussner, I., Hause, B., Vörös, K., Parthier, B., & Wasternack, C. (1995). Jasmonate‐induced lipoxygenase forms are localized in chloroplasts of barley leaves (Hordeum vulgare cv. Salome). The Plant Journal, 7(6), 949–957.

    Article  CAS  Google Scholar 

  • Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook (pp. 571–607). Humana Press.

  • Geourjon, C., & Deleage, G. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer applications in the biosciences: CABIOS, 11(6), 681–684.

    CAS  PubMed  Google Scholar 

  • Gómez-Rico, A., Salvador, M. D., La Greca, M., & Fregapane, G. (2006). Phenolic and volatile compounds of extra virgin olive oil (Olea europaea L. Cv. Cornicabra) with regard to fruit ripening and irrigation management. Journal of Agricultural and Food Chemistry, 54(19), 7130–7136.

    Article  PubMed  Google Scholar 

  • Grayburn, W. S., Schneider, G. R., Hamilton-Kemp, T. R., Bookjans, G., Ali, K., & Hildebrand, D. F. (1991). Soybean leaves contain multiple lipoxygenases. Plant Physiology, 95(4), 1214–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths, A., Prestage, S., Linforth, R., Zhang, J., Taylor, A., & Grierson, D. (1999). Fruit-specific lipoxygenase suppression in antisense-transgenic tomatoes. Postharvest Biology and Technology, 17(3), 163–173.

    Article  CAS  Google Scholar 

  • Gundlach, H., Müller, M. J., Kutchan, T. M., & Zenk, M. H. (1992). Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proceedings of the National Academy of Sciences, 89(6), 2389–2393.

    Article  CAS  Google Scholar 

  • Heitz, T., Bergey, D. R., & Ryan, C. A. (1997). A gene encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate. Plant Physiology, 114(3), 1085–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornung, E., Walther, M., Kühn, H., & Feussner, I. (1999). Conversion of cucumber linoleate 13-lipoxygenase to a 9-lipoxygenating species by site-directed mutagenesis. Proceedings of the National Academy of Sciences, 96(7), 4192–4197.

    Article  CAS  Google Scholar 

  • Howe, G. A., & Jander, G. (2008). Plant immunity to insect herbivores. Annual Review of Plant Biology, 59, 41–66.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, I. S., & Hwang, B. K. (2010). The pepper 9-lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. Plant Physiology, 152(2), 948–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keegstra, K., & Cline, K. (1999). Protein import and routing systems of chloroplasts. The Plant Cell Online, 11(4), 557–570.

    Article  CAS  Google Scholar 

  • Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132.

    Article  CAS  PubMed  Google Scholar 

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Maccarrone, M., Veldink, G. A., Agro, A. F., & Vliegenthart, J. F. (1995). Modulation of soybean lipoxygenase expression and membrane oxidation by water deficit. FEBS Letters, 371(3), 223–226.

    Article  CAS  PubMed  Google Scholar 

  • Maucher, H., Hause, B., Feussner, I., Ziegler, J., & Wasternack, C. (2000). Allene oxide synthases of barley (Hordeum vulgare cv. Salome): tissue specific regulation in seedling development. The Plant Journal, 21(2), 199–213.

    Article  CAS  PubMed  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497.

    Article  CAS  Google Scholar 

  • Nellen, A., Rojahn, B., & Kindl, H. (1995). Lipoxygenase forms located at the plant plasma membrane. Zeitschrift für Naturforschung, 50c, 29–36.

    Google Scholar 

  • Park, S. W., Li, W., Viehhauser, A., He, B., Kim, S., Nilsson, A. K., … Lawrence, C. B. (2013). Cyclophilin 20–3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proceedings of the National Academy of Sciences, 110(23), 9559–9564.

  • Porta, H., Rueda-Benítez, P., Campos, F., Colmenero-Flores, J. M., Colorado, J. M., Carmona, M. J., … Rocha-Sosa, M. (1999). Analysis of lipoxygenase mRNA accumulation in the common bean (Phaseolus vulgaris L.) during development and under stress conditions. Plant and cell physiology, 40(8), 850–858.

  • Rahimi, S., Devi, B. S. R., Khorolragchaa, A., Kim, Y. J., Kim, J. H., Jung, S. K., & Yang, D. C. (2014). Effect of salicylic acid and yeast extract on the accumulation of jasmonic acid and sesquiterpenoids in Panax ginseng adventitious roots. Russian Journal of Plant Physiology, 61(6), 811–817.

    Article  CAS  Google Scholar 

  • Rahimi, S., Kim, Y. J., Yang, D. C. (2015a). Production of ginseng saponins: elicitation strategy and signal transductions. Applied microbiology and biotechnology, 99(17), 6987-96.

  • Rahimi, S., Kim, Y. J., Devi, B. S. R., Oh, J. Y., Kim, S. Y., Kwon, W. S., & Yang, D. C. (2015b). Sodium nitroprusside enhances the elicitation power of methyl jasmonate for ginsenoside production in Panax ginseng roots. Research on Chemical Intermediates. doi:10.1007/s11164-015-2188-x.

  • Royo, J., Vancanneyt, G., Pérez, A. G., Sanz, C., Störmann, K., Rosahl, S., & Sánchez-Serrano, J. J. (1996). Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns. Journal of Biological Chemistry, 271(35), 21012–21019.

    Article  CAS  PubMed  Google Scholar 

  • Sathiyamoorthy, S., In, J. G., Gayathri, S., Kim, Y. J., & Yang, D. C. (2009). Generation and gene ontology based analysis of expressed sequence tags (EST) from a Panax ginseng C.A. Meyer roots. Molecular Biology Reports, 46(7), 932–939.

    Google Scholar 

  • Scott, R. J., Spielman, M., & Dickinson, H. G. (2004). Stamen structure and function. The Plant Cell Online, 16(suppl 1), S46–S60.

    Article  CAS  Google Scholar 

  • Servili, M., Esposto, S., Lodolini, E., Selvaggini, R., Taticchi, A., Urbani, S., … Gucci, R. (2007). Irrigation effects on quality, phenolic composition, and selected volatiles of virgin olive oils cv. Leccino. Journal of Agricultural and Food Chemistry, 55(16), 6609–6618.

  • Shen, J., Tieman, D., Jones, J. B., Taylor, M. G., Schmelz, E., Huffaker, A., … Klee, H. J. (2014). A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. Journal of experimental botany, 65(2), 419–428.

  • Stefanoudaki, E., Williams, M., Chartzoulakis, K., & Harwood, J. (2009). Effect of irrigation on quality attributes of olive oil. Journal of Agricultural and Food Chemistry, 57(15), 7048–7055.

    Article  CAS  PubMed  Google Scholar 

  • Stephenson, L. C., Bunker, T. W., Dubbs, W. E., & Grimes, H. D. (1998). Specific soybean lipoxygenases localize to discrete subcellular compartments and their mRNAs are differentially regulated by source-sink status. Plant Physiology, 116(3), 923–933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack, C. (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, 100(4), 681–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber, H. (2002). Fatty acid-derived signals in plants. Trends in Plant Science, 7(5), 217–224.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X. Y., Jiang, W. J., & Yu, H. J. (2012). The expression profiling of the lipoxygenase (LOX) family genes during fruit development, abiotic stress and hormonal treatments in cucumber (Cucumis sativus L.). International journal of molecular sciences, 13(2), 2481–2500.

  • Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23(4), 283–333.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation (NRF) by the Ministry of Education (2013R1A1A2064430), Republic of Korea (YJ Kim) and iPET (312064-03-1-HD040), Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries, Republic of Korea (DC Yang).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shadi Rahimi or Deok-Chun Yang.

Ethics declarations

Conflict of interest

None.

Additional information

Kwi-Sik Bae and Shadi Rahimi contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 118 kb)

Online Resource 2

(PDF 90 kb)

Online Resource 3

(PDF 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, KS., Rahimi, S., Kim, YJ. et al. Molecular characterization of lipoxygenase genes and their expression analysis against biotic and abiotic stresses in Panax ginseng . Eur J Plant Pathol 145, 331–343 (2016). https://doi.org/10.1007/s10658-015-0847-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0847-9

Keywords

Navigation