Skip to main content
Log in

Sporulation rate in culture and mycoparasitic activity, but not mycohost specificity, are the key factors for selecting Ampelomyces strains for biocontrol of grapevine powdery mildew (Erysiphe necator)

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

To develop a new biofungicide product against grapevine powdery mildew, caused by Erysiphe necator, cultural characteristics and mycoparasitic activities of pre-selected strains of Ampelomyces spp. were compared in laboratory tests to the commercial strain AQ10. Then, a 2-year experiment was performed in five vineyards with a selected strain, RS1-a, and the AQ10 strain. This consisted of autumn sprays in vineyards as the goal was to reduce the number of chasmothecia of E. necator, and, thus, the amount of overwintering inocula, instead of targeting the conidial stage of the pathogen during spring and summer. This is a yet little explored strategy to manage E. necator in vineyards. Laboratory tests compared the growth and sporulation of colonies of a total of 33 strains in culture; among these, eight strains with superior characteristics were compared to the commercial product AQ10 Biofungicide® in terms of their intra-hyphal spread, pycnidial production, and reduction of both asexual and sexual reproduction in E. necator colonies. Mycoparasitic activities of the eight strains isolated from six different powdery mildew species, including E. necator, did not depend on their mycohost species of origin. Strain RS1-a, isolated from rose powdery mildew, showed, together with three strains from E. necator, the highest rate of parasitism of E. necator chasmothecia. In field experiments, each strain, AQ10 and RS1-a, applied twice in autumn, significantly delayed and reduced early-season development of grapevine powdery mildew in the next year. Therefore, instead of mycohost specificity of Ampelomyces presumed in some works, but not confirmed by this study, the high sporulation rate in culture and the mycoparasitic patterns became the key factors for proposing strain RS1-a for further development as a biocontrol agent of E. necator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angeli, D., Pellegrini, E., & Pertot, I. (2009). Occurence of Erysiphe necator chasmothecia and their natural parasitization by Ampelomyces quisqualis. Phytopathology, 99, 704–710.

    Article  PubMed  Google Scholar 

  • Angeli, D., Maurhofer, M., Gessler, C., & Pertot, I. (2012a). Existence of different physiological forms within genetically diverse strains of Ampelomyces quisqualis. Phytoparasitica, 40, 37–51.

    Article  Google Scholar 

  • Angeli, D., Puopolo, G., Maurhofer, M., Gessler, C., & Pertot, I. (2012b). Is the mycoparasitic activity of Ampelomyces quisqualis biocontrol strains related to phylogeny and hydrolytic enzyme production? Biological Control, 63, 348–358.

    Article  Google Scholar 

  • Brand, M., Messika, Y., Elad, Y., David, D. R., & Sztejnberg, A. (2009). Spray treatments combined with climate modification for the management of Leveillula taurica in sweet pepper. European Journal of Plant Pathology, 124, 309–329.

    Article  Google Scholar 

  • Caffi, T., Rossi, V., & Bugiani, R. (2010). Evaluation of a warning system for controlling primary infections of grapevine downy mildew. Plant Disease, 94, 709–716.

    Article  CAS  Google Scholar 

  • Caffi, T., Legler, S. E., Rossi, V., & Bugiani, R. (2012). Evaluation of a warning system for early-season control of grapevine powdery mildew. Plant Disease, 96, 104–110.

    Article  Google Scholar 

  • Caffi, T., Legler, S. E., Buigiani, R., & Rossi, V. (2013). Combining sanitation and disease modelling for control of grapevine powdery mildew. European Journal of Plant Pathology, 135, 817–829.

    Article  Google Scholar 

  • Campbell, C. L., & Madden, L. V. (1990). Introduction to plant disease epidemiology. New York: Wiley.

    Google Scholar 

  • Carisse, O., Bacon, R., Lefebvre, A., & Lessard, K. (2009). A degree-day model to initiate fungicide spray programs for management of grape powdery mildew (Erysiphe necator). Canadian Journal of Plant Pathology, 31, 186–194.

    Article  Google Scholar 

  • Elad, Y., Kirshner, B., & Sztejnberg, A. (1998). Management of powdery mildew and gray mold of cucumber by Trichoderma harzianum T39 and Ampelomyces quisqualis AQ10. BioControl, 43, 241–251.

    Article  Google Scholar 

  • Falk, S. P., Gadoury, D. M., Pearson, R. C., & Seem, R. C. (1995). Partial control of grape powdery mildew by the mycoparasite Ampelomyces quisqualis. Plant Disease, 79, 483–490.

    Article  Google Scholar 

  • Füzi, I. (2003). Natural parasitism of Uncinula necator cleistothecia by Ampelomyces hyperparasites in the south-western vineyards of Hungary. Acta Phytopathologica et Entomologica Hungarica, 38, 53–60.

    Article  Google Scholar 

  • Gadoury, D. M., Seem, R. C., Ficke, A., & Wilcox, W. F. (2003). Ontogenic resistance to powdery mildew in grape berries. Phytopathology, 93, 547–555.

    Article  PubMed  Google Scholar 

  • Hashioka, Y., & Nakai, Y. (1980). Ultrastructure of pycnidial development and mycoparasitism of Ampelomyces quisqualis parasitic on Erysiphales. Transactions of the Mycological Society of Japan, 21, 329–338.

    Google Scholar 

  • Kiss, L. (2008). Intracellular mycoparasites in action: interactions between powdery mildew fungi and Ampelomyces. In S. V. Avery, M. Stratford, & P. Van West (Eds.), Stress in yeasts and filamentous fungi (pp. 37–52). Elsevier, London: Academic.

    Chapter  Google Scholar 

  • Kiss, L., Russell, J. C., Szentiványi, O., Xu, X., & Jeffries, P. (2004). Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi. Biocontrol Science and Technology, 14, 635–651.

    Article  Google Scholar 

  • Kiss, L., Pintye, A., Zséli, G., Jankovics, T., Szentiványi, O., Hafez, Y. M., & Cook, R. T. A. (2010). Microcyclic conidiogenesis in powdery mildews and its association with intracellular parasitism by Ampelomyces. European Journal of Plant Pathology, 126, 445–451.

    Article  Google Scholar 

  • Kiss, L., Pintye, A., Kovács, G. M., Jankovics, T., Fontaine, M., Harvey, N., Xu, X., Nicot, P. C., Bardin, M., Shykoff, J. A., & Giraud, T. (2011). Temporal isolation explains host-related genetic differentiation in a group of widespread mycoparasitic fungi. Molecular Ecology, 20, 1492–1507.

    Article  PubMed  Google Scholar 

  • Lee, S. Y., Lee, S. B., & Kim, C. H. (2004). Biological control of powdery mildew by Q-fect WP (Ampelomyces quisqualis 94013) in various crops. IOBC/wprs Bulletin, 27, 329–331.

    Google Scholar 

  • Legler, S. E., Caffi, T., Kiss, L., Pintye, A., & Rossi, V. (2011a). Methods for screening new Ampelomyces strains to be used as biocontrol agents against grapevine powdery mildew. IOBC/wprs Bulletin, 66, 149–154.

    Google Scholar 

  • Legler, S. E., Caffi, T., & Rossi, V. (2011b). Effect of different plant protection products on the sexual stage of grapevine powdery mildew. In A. Calonnec, D. Thiéry, & M. C. Médalin (Eds.), Proceedings of the European Meeting of the Working Group “integrated protection and production in viticulture” (p. 2). France: Lacanau.

    Google Scholar 

  • Legler, S. E., Caffi, T., & Rossi, V. (2012). A nonlinear model for temperature-dependent development of Erysiphe necator chasmothecia on grapevine leaves. Plant Pathology, 60, 96–105.

    Article  Google Scholar 

  • Legler, S. E., Caffi, T., & Rossi, V. (2014). A model for the development of Erysiphe necator chasmothecia in vineyards. Plant Pathology, 63, 911–921.

    Article  Google Scholar 

  • Liang, C., Yang, J., Kovács, G. M., Szentiványi, O., Li, B., Xu, X. M., & Kiss, L. (2007). Genetic diversity of Ampelomyces mycoparasites isolated from different powdery mildew species in China inferred from analysis of rDNA ITS sequences. Fungal Diversity, 24, 225–240.

    Google Scholar 

  • McGrath, M. T., & Shishkoff, N. (1999). Evaluation of biocompatible products for managing cucurbit powdery mildew. Crop Protection, 18, 471–478.

    Article  Google Scholar 

  • Park, M. J., Choi, Y. J., Hong, S. B., & Shin, H. D. (2010). Genetic variability and mycohost association of Ampelomyces quisqualis isolates inferred from phylogenetic analyses of ITS rDNA and actin gene sequences. Fungal Biology, 114, 235–247.

    Article  CAS  PubMed  Google Scholar 

  • Paulitz, T. C., & Bélanger, R. R. (2001). Biological control in greenhouse systems. Annual Review of Phytopathology, 39, 103–133.

    Article  CAS  PubMed  Google Scholar 

  • Pertot, I., Zasso, R., Amsalem, L., Mario Baldessari, M., Angeli, G., & Elad, Y. (2008). Integrating biocontrol agents in strawberry powdery mildew control strategies in high tunnel growing systems. Crop Protection, 27, 622–631.

    Article  Google Scholar 

  • Pintye, A., Bereczky, Z., Kovács, G. M., Nagy, L. G., Xu, X., Legler, S. E., Váczy, Z., Váczy, K. Z., Caffi, T., Rossi, V., & Kiss, L. (2012). No indication of strict host associations in a widespread mycoparasite: grapevine powdery mildew (Erysiphe necator) is attacked by phylogenetically diverse Ampelomyces strains in the field. Phytopathology, 102, 707–716.

    Article  CAS  PubMed  Google Scholar 

  • Pintye, A., Ropars, J., Harvey, N., Shin, H. D., Leyronas, C., Nicot, P. C., Giraud, T., & Kiss, L. (2015). Host phenology and geography as drivers of differentiation in generalist fungal mycoparasites. PLoS ONE, 10(3), e0120703. doi:10.1371/journal.pone.0120703.

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero, D., Rivera, M. E., Gazorla, F. M., De Vincente, A., & Pérez-Garcia, A. (2003). Effect of mycoparasitic fungi on the development of Sphaerotheca fusca in melon leaves. Mycological Research, 107, 64–71.

    Article  PubMed  Google Scholar 

  • Rossi, V., Caffi, T., & Legler, S. E. (2010). Dynamics of ascospore maturation and discharge in Erysiphe necator, the causal agent of grape powdery mildew. Phytopathology, 100, 1321–1329.

    Article  PubMed  Google Scholar 

  • Rossi, V., Caffi, T., Legler, S. E., Bugiani, R., & Frisullo, P. (2011). Dispersal of the sexual stage of Erysiphe necator in northern Italy. IOBC/WPRS Bulletin, 67, 115–121.

    Google Scholar 

  • Shishkoff, N., & McGrath, M. T. (2002). AQ10 biofungicide combined with chemical fungicides or AddQ spray adjuvant for control of cucurbit powdery mildew in detached leaf culture. Plant Disease, 86, 915–918.

    Article  CAS  Google Scholar 

  • Speer, E. O. (1978). Beitrag zur morphologie von Ampelomyces quisqualis Ces. Sydowia, 31, 242–246.

    Google Scholar 

  • Sutton, B. C. (1980). The coelomycetes (Fungi imperfecti with pycnidia, acervuli and stromata). Kew: Commonwealth Mycological Institute.

    Google Scholar 

  • Szentiványi, O., Kiss, L., Russell, J. C., Kovács, G. M., Varga, K., Jankovics, T., Lesemann, S., Xu, X., & Jeffries, P. (2005). Ampelomyces mycoparasites from apple powdery mildew identified as a distinct group based on single-stranded conformation polymorphism analysis of the rDNA ITS region. Mycological Research, 109, 429–438.

    Article  PubMed  Google Scholar 

  • Sztejnberg, A., Galper, S., Mazar, S., & Lisker, N. (1989). Ampelomyces quisqualis for biological and integrated control of powdery mildew in Israel. Journal of Phytopathology, 124, 285–295.

    Article  CAS  Google Scholar 

  • Tollenaere, C., Pernechele, B., Mäkinen, H. S., Parratt, S. R., Németh, M. Z., Kovács, G. M., Kiss, L., Tack, A. J. M., & Laine, A. L. (2014). A hyperparasite affects the population dynamics of a wild plant pathogen. Molecular Ecology, 23, 5877–5887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported in part by an EU grant (FP 7-SME-2007-1-222045-BCA_grape) and by a grant of the Hungarian Scientific Research Fund (OTKA NN 100415). AP acknowledges the support of a János Bolyai Research Scholarships of the Hungarian Academy of Sciences (MTA). SE Legler carried out this work within the Doctoral School on the Agro-Food System (Agrisystem) of the Università Cattolica del Sacro Cuore (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levente Kiss.

Additional information

Sara Elisabetta Legler and Alexandra Pintye contributed equally to this work and thus share first authorship

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 26 kb)

ESM 2

(DOCX 21 kb)

ESM 3

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legler, S.E., Pintye, A., Caffi, T. et al. Sporulation rate in culture and mycoparasitic activity, but not mycohost specificity, are the key factors for selecting Ampelomyces strains for biocontrol of grapevine powdery mildew (Erysiphe necator). Eur J Plant Pathol 144, 723–736 (2016). https://doi.org/10.1007/s10658-015-0834-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0834-1

Keywords

Navigation