Skip to main content
Log in

Effect of some protein hydrolysates against gray mould of table and wine grapes

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The efficacy of eight protein hydrolysates (PHs) of different origins, i.e., soybean (SoyA and SoyB), lupin (LupF and LupP), pea (Pea), yeast (Yeast), casein (Cas), and malt (Cer), in controlling gray mould of grapes, caused by Botrytis cinerea, was evaluated. In in vitro trials, the different PHs did not affect pathogen growth. Whereas, in in vivo trials, wound applications of SoyA, SoyB, LupP, and Cas showed significant effect in reducing rots on table grapes. SoyA and Cas were further tested at different concentrations against B. cinerea. A dose effect was observed, with the best activity recorded at 0.8 g/l, reducing gray mould of 67 and 54 % by SoyA and Cas, respectively. To simulate a commercial application, the experiment was repeated under natural infections, applying PHs at different doses by spray on detached berries. All doses induced a significant reduction of rots, and in general, there were no significant differences among the doses ≤6.4 g/l. Finally, the two hydrolysates were tested on wine grapes cv. Corvina. When applied in the field during growth phase until véraison, SoyA and Cas significantly reduced gray mould incidence by 65 and 92 %, as compared to water control, respectively. Whereas, a combination of pre- and postharvest application of SoyA and Cas reduced storage rots by 56 and 40 %, respectively. Overall SoyA proved to be the best treatment. Although the obtained results need further confirmation, they support the role of Cas and particularly SoyA as safe and effective alternative to traditional fungicides against gray mould of grapes, to be applied in the field and/or during postharvest phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aziz, A., Heyraud, A., & Lambert, B. (2004). Oligogalacturonide signal transduction, induction of defence-related responses and protection of grapevine against Botrytis cinerea. Planta, 218, 767–774.

    Article  CAS  PubMed  Google Scholar 

  • Boller, T. (1995). Chemoperception of microbial signals in plant cells. Annual Review of Plant Physiology and Plant Molecular Biology, 46, 189–214.

    Article  CAS  Google Scholar 

  • Boehme, M., Schevtschenko, J., & Pinker, I. (2008). Use of biostimulators to reduce abiotics stress in cucumber plants (Cucumis sativus L.). Acta Horticulturae, 774, 339–344.

  • Boselli, M., Bahouaoui, M. A., Lachhab, N., Sanzani, S. M., & Ippolito, A. (2015). Vite: idrolizzati proteici contro lo stress idrico. L’Informatore Agrario, 22, 39–43.

    Google Scholar 

  • Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383, 3–41.

    Article  CAS  Google Scholar 

  • Choct, M., Dersjant-Li, Y., McLeish, J., & Peisker, M. (2010). Soy oligosaccharides and soluble non-starch polysaccharides: a review of digestion, nutritive and anti-nutritive effects in pigs and poultry. Asian-Australasian Journal of Animal Sciences, 23, 1386–1398.

  • Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., & Cardarelli, M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Frontiers in Plant Science, 5, 448.

    Article  PubMed  PubMed Central  Google Scholar 

  • Droby, S., Wilson, C. L., Wisniewski, M., & El Ghaouth, A. (2001). Biologically based technology for the control of postharvest diseases of fruits and vegetables. In C. L. Wilson & S. Droby (Eds.), Microbial food contamination (pp. 187–205). Boca Raton: CRC Press LLC.

    Google Scholar 

  • Ertani, A.., Cavani, L., Pizzeghello, D., Brandellero, E., Altissimo, A., Ciavatta, C., & Nardi, S. (2009). Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. Journal of Plant Nutrition and Soil Science, 172, 237–244.

  • Ertani, A., Schiavon, M., Adele, M., & Serenella, N. (2013). Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant and Soil, 364, 145.

    Article  CAS  Google Scholar 

  • Fedrizzi, B., Tosi, E., Simonato, B., Finato, F., Cipriani, M., Caramia, G., & Zapparoli, G. (2011). Changes in wine aroma composition according to botrytized berry percentage: a preliminary study on amarone wine. Food Technology and Biotechnology, 49, 529–535.

    CAS  Google Scholar 

  • Feliziani, E., Santini, M., Landi, L., & Romanazzi, G. (2013). Pre and postharvest treatment with alternatives to synthetic fungicides to control postharvest decay of sweet cherry. Postharvest Biology and Technology, 78, 133–138.

    Article  CAS  Google Scholar 

  • Gatto, M. A., Ippolito, A., Linsalata, V., Cascarano, N. A., Nigro, F., Vanadia, S., & Venere, D. (2011). Activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetables. Postharvest Biology and Technology, 61, 72–82.

    Article  Google Scholar 

  • Gauthier, A., Trouvelot, S., Kelloniemi, J., Frettinger, P., Wendehenne, D., Daire, X., Joubert, J. M., Ferrarini, A., Delledonne, M., Flors, V., & Poinssot, B. (2014). The sulfated laminarin triggers a stress transcriptome before priming the SA- and ROS-dependent defenses during grapevine’s induced resistance against Plasmopara viticola. PLOS One, 9, 1–13.

    Article  Google Scholar 

  • Hoa, T. T., & Ducamp, M. N. (2008). Effects of different coatings on biochemical changes of “cat Hoa loc” mangoes in storage. Postharvest Biology and Technology, 48, 150–152.

    Article  CAS  Google Scholar 

  • Ippolito, A., & Sanzani, S. M. (2011). Control of postharvest decay by the integration of pre- and postharvest application of nonchemical compounds. Acta Horticulturae, 905, 135–143.

    Article  CAS  Google Scholar 

  • Ippolito, A., El Ghaouth, A., Wilson, C. L., & Wisniewski, M. (2000). Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defence responses. Postharvest Biology and Technology, 19, 265–272.

    Article  CAS  Google Scholar 

  • Iriti, M., Rosoni, M., Borgo, M., & Faoro, F. (2004). Benzothiadiazole enhances resveratrol and anthocyanin biosynthesis in grapevine, meanwhile improving resistance to Botrytis cinerea. Journal of Agricultural and Food Chemistry, 52, 4406–4413.

    Article  CAS  PubMed  Google Scholar 

  • Karelin, A. A., Blishchenko, E. Y., & Ivanov, V. T. (1998). A novel system of peptidergic regulation. FEBS Letters, 428, 7–12.

    Article  CAS  PubMed  Google Scholar 

  • Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: production and functionality. International Dairy Journal, 16, 945–960.

    Article  CAS  Google Scholar 

  • Lachhab, N., Sanzani, S. M., Adrian, M., Chiltz, A., Balacey, S., Boselli, M., Ippolito, A., & Poinssot, B. (2014). Soybean and casein hydrolysates induce grapevine immune responses and resistance against Plasmopara viticola. Frontiers in Plant Science, 716, 1–10.

    Google Scholar 

  • Lachhab, N., Sanzani, S. M., Fallanaj, F., Youssef, K., Nigro, F., Boselli, M., & Ippolito, A. (2015). Protein hydrolysates as resistance inducers for controlling green mold of citrus fruit. Acta Horticulturae, 1065, 1593–1598.

    Article  Google Scholar 

  • Lisiecka, J., Knaflewski, M., Spizewski, T., Fraszczak, B., Kaluzewicz, A., & Krzesinski, W. (2011). The effect of animal protein hydrolysate on quantity and quality of strawberry daughter plants cv. Elsanta. Acta Scientiarum Polonorum Hortorum Cultus, 10, 31–40.

    Google Scholar 

  • Mari, M., Neri, F., & Bertolini, P. (2010). New approaches for postharvest disease control in Europe. In D. Prusky & M. L. Gullino (Eds.), Postharvest pathology (pp. 119–136). Berlin: Springer.

    Google Scholar 

  • McKinney, H. H. (1923). Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal of Agricultural Research, 26, 195–217.

  • Nigro, F., Ippolito, A., Lattanzio, V., Di Venere, D., & Salerno, M. (2000). Effect of ultraviolet-C light on postharvest decay of strawberry. Journal of Plant Pathology, 82, 29–37.

    Google Scholar 

  • Nigro, F., Schena, L., Ligorio, A., Pentimone, I., Ippolito, A., & Salerno, M. G. (2006). Control of table grape storage rots by pre-harvest applications of salts. Postharvest Biology and Technology, 42(2), 142–149.

    Article  CAS  Google Scholar 

  • Randhir, R., Lin, Y. T., & Shetty, K. (2004). Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors. Asia Pacific Journal of Clinical Nutrition, 13, 295–307.

    CAS  PubMed  Google Scholar 

  • Ribéreau-Gayon, P., Dubourdieu, D., Donèche, B., & Lonvaud, A. (2006). Handbook of enology volume 1, the microbiology of wine and vinification. Chichester: Wiley & Sons Inc.

    Google Scholar 

  • Romanazzi, G. (2010). Chitosan treatment for the control of postharvest decay of table grapes, strawberries and sweet cherries. In D. Sivakumar (Ed.), Fresh produce—special issues: New trends in postharvest management of fresh produce (pp. 111–115). Japan: Global Science Books.

    Google Scholar 

  • Romanazzi, G., Feliziani, E., Santini, M., & Landi, L. (2013). Effectiveness of postharvest treatment with chitosan and other resistance inducers in the control of storage decay of strawberry. Postharvest Biology and Technology, 75, 24–27.

    Article  CAS  Google Scholar 

  • Rosslenbroich, H. J., & Stuebler, D. (2000). Botrytis cinerea history of chemical control and novel fungicides for its management. Crop Protection, 19, 557–561.

    Article  CAS  Google Scholar 

  • Sanzani, S. M., Schena, L., Girolamo, A., Ippolito, A., & Gonzales-Candelas, L. (2010). Characterization of genes associated with induced resistance against Penicillium expansum in apple fruit treated with quercetin. Postharvest Biology and Technology, 56, 1–11.

    Article  CAS  Google Scholar 

  • Sanzani, S. M., Schena, L., De Cicco, V., & Ippolito, A. (2012). Detection and quantification of Botrytis cinerea in symptomless table grape stamens and berries. Postharvest Biology and Technology, 68, 64–71.

    Article  Google Scholar 

  • Schiavon, M., Pizzeghello, D., Muscolo, A., Vaccaro, S., Francioso, O., & Nardi, S. (2010). High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). Journal of Chemical Ecology, 36, 662–669.

    Article  CAS  PubMed  Google Scholar 

  • Świątecka, D., Małgorzata, I., Aleksander, Ś., Henryk, K., & Elżbieta, K. (2010). The impact of glycated pea proteins on bacterial adhesion. Food Research International, 43, 1566–1576.

  • Vercesi, A., Locci, R., & Prosser, J. I. (1997). Growth kinetics of Botrytis cinerea on organic acids and sugarsin relation to colonization of grape berries. Mycological Research, 101, 139–142.

    Article  CAS  Google Scholar 

  • Youssef, K., & Roberto, S. R. (2014a). Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of ‘Italia’ table grapes. Postharvest Biology and Technology, 87, 95–102.

    Article  CAS  Google Scholar 

  • Youssef, K., & Roberto, S. R. (2014b). Salt strategies to control Botrytis mold of ‘Benitaka’ table grapes and to maintain fruit quality during storage. Postharvest Biology and Technology, 95, 95–102.

    Article  CAS  Google Scholar 

  • Youssef, K., Ligorio, A., Sanzani, S. M., Nigro, F., & Ippolito, A. (2012). Control of storage diseases of citrus by pre- and postharvest application of salts. Postharvest Biology and Technology, 72, 57–63.

    Article  CAS  Google Scholar 

  • Youssef, K., Sanzani, S. M., Ligorio, A., Ippolito, A., & Terry, L. A. (2014). Sodium carbonate and bicarbonate treatments induce resistance to postharvest green moldon citrus fruit. Postharvest Biology and Technology, 87, 61–69.

    Article  CAS  Google Scholar 

  • Zhang, X., & Schmidt, R. E. (1997). The impact of growth regulators on the a-tocopherol status in water-stressed Poa pratensis L. International Turfgrass Research Journal, 8, 1364–1373.

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the projects “Thirsty Grapes” funded by Regione Veneto (PSR2007-2013, mis. 124, n.2307790), and “ECO_P4” funded by Regione Puglia (PON02_00186_2866121). We acknowledge “A. Costantino & C. S.p.A.” (Favria, Turin, Italy) for providing the hydrolysates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona M. Sanzani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lachhab, N., Sanzani, S.M., Bahouaoui, M.A. et al. Effect of some protein hydrolysates against gray mould of table and wine grapes. Eur J Plant Pathol 144, 821–830 (2016). https://doi.org/10.1007/s10658-015-0749-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0749-x

Keywords

Navigation