Skip to main content

Advertisement

Log in

Use of systems analysis to develop plant disease models based on literature data: grape black-rot as a case-study

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The available knowledge on black-rot of grape was retrieved from literature, analyzed, and synthesized to develop a mechanistic model of the life cycle of the pathogen (Guignardia bidwelii) based on the systems analysis. Three life-cycle compartments were defined: (i) production and maturation of inoculum in overwintered sources (i.e., ascospores from pseudothecia and conidia from pycnidia in berry mummies and cane lesions); (ii) infection caused by ascospores and conidia; and (iii) disease onset and production of secondary inoculum. An analysis of published, quantitative information was conducted to develop a mechanistic model driven by weather and vine phenology; equations were developed for ascospore and conidial maturation in overwintered fruiting bodies, spore release and survival, infection occurrence and severity, incubation and latency periods, onset of lesions, production of pycnidia, and infectious periods. The model was then evaluated for its ability to represent the real system and its usefulness for understanding black-rot epidemics by using three typical epidemics. Finally, weaknesses in our knowledge are discussed. Additional research is needed concerning the influence of wetness duration and temperature on infection by ascospores, production dynamics of pycnidia and conidia in black-rot lesions, and the dynamics of conidia exudation from pycnidia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aust, H., & Kranz, J. (1988). Experiments and procedures in epidemiological field studies. In J. Kranz & J. Rotem (Eds.), Experimental techniques in plant disease epidemiology (pp. 7–17). Berlin: Springer.

    Chapter  Google Scholar 

  • Barakat, R. M., Johnson, D. A., & Grove, G. G. (1995). Factors affecting conidial exudation and survival, and ascospore germination of Leucostoma cincta. Plant Disease, 79, 1245–1248.

    Article  Google Scholar 

  • Becker, C. M., & Pearson, R. C. (1996). Black rot lesions on overwintered canes of Euvitis supply conidia of Guignardia bidwellii for primary inoculum in the spring. Plant Disease, 80, 24–27.

    Article  Google Scholar 

  • Cablassi, I. (2000). Black rot, Nuova ampelopatia in Friuli Venezia Giulia. In A. Morando, M. Morando, & D. Morando (Eds.), Vitenda 2000. L’agenda del vitivinicultore (pp. 58–60). Calosso: Vit. En.

    Google Scholar 

  • Caffi, T., Bugiani, R., & Rossi, V. (2010). New forecasting models as effective tools for rational diseases control strategies in vineyards. Petria, 20, 562–563.

    Google Scholar 

  • Caffi, T., Rossi, V., Legler, S. E., & Bugiani, R. (2011). A mechanistic model simulating ascosporic infections by Erysiphe necator, the powdery mildew fungus of grapevine. Plant Pathology, 60, 522–531.

    Article  Google Scholar 

  • Caffi, T., Legler, S. E., Rossi, V., & Bugiani, R. (2012). Evaluation of a warning system for early-season control of grapevine powdery mildew. Plant Disease, 96, 104–110.

    Article  Google Scholar 

  • Caltrider, P. G. (1961). Growth and sporulation of Guignardia bidwellii. Phytopathology, 51, 860–863.

    Google Scholar 

  • Carisse, O., Bacon, R. M., Lasnier, J., Lefebvre, A., et al. (2009). Grape disease management in Quebec. Agriculture and Agri-Food Canada, 10372, 36–39.

    Google Scholar 

  • Cunniffe, N. J., Stutt, R. O. J. H., van den Bosch, F., & Gilligan, C. A. (2012). Time-dependent infectivity and flexible latent and infectious periods in compartmental models of plant disease. Phytopathology, 102, 365–380.

    Article  CAS  PubMed  Google Scholar 

  • Devaut, T. (1990). Contribution a la modelisation des contaminations de la vigne Par Guignardia bidwellii (Ellis) Viala e Ravaz agent responsable du Black-rot. Section de troisiéme cycle intércoles. Montpellier: Ecole nationale superieure agronomiqe.

    Google Scholar 

  • Doufor, R. (2006) Grapes: Organic production. Resource document. ATTRA IP031. https://attra.ncat.org/attra-pub/summaries/summary.php?pub=5. Accessed 19 May 2014.

  • Ellis, M. A., Madden, L. V., & Wilson, L. L. (1986). Electronic grape black rot predictor for scheduling fungicides with curative activity. Plant Disease, 70, 938–940.

    Article  CAS  Google Scholar 

  • Emele, L. R., Wilcox, W. F., Gadoury, D. M., & Seem, R. C. (1998). Critical period for control of black rot of grape. Phytopathology, 88, S25.

    Google Scholar 

  • Eyal, Z., Scharen, A. L., Prescott, J. M., & Ginkel, M. V. (1987). The Septoria diseases of wheat: concepts and methods of disease management. Mexico, DF: CIMMYT.

    Google Scholar 

  • Ferrandino, F. J. (2012). Time scales of inoculum production and the dynamics of the Epidemic. Phytopathology, 8, 728–732.

    Article  Google Scholar 

  • Ferrin, D. M., & Ramsdell, D. C. (1977). Ascospore dispersal and infection of grapes by Guignardia bidwellii, the causal agent of grape black rot disease. Phytopathology, 67, 1501–1505.

    Article  Google Scholar 

  • Ferrin, D. M., & Ramsdell, D. C. (1978). Influence of conidia dispersal and environment on infection of grape by Guignardia bidwellii. Phytopathology, 68, 892–895.

    Article  Google Scholar 

  • Funt, R. C., Ellis, M. A., & Madden, L. V. (1990). Economic analysis of protectant and disease-forecast-based fungicide spray programs for control of apple scab and grape black rot in Ohio. Plant Disease, 74, 638–642.

    Article  Google Scholar 

  • Galet, P. (1977). Black-rot. In: Les Maladies et les Parasites de la vigne: Les Champignons et les Virus (1st ed., pp. 223–260). Montpellier: Paysan du Midi.

    Google Scholar 

  • Gough, F. J. (1978). Effect of wheat host cultivars on pycnidiospore production by Septoria tritici. Phytopathology, 68, 1343–1345.

    Article  Google Scholar 

  • Harms, M., Holz, B., Hoffmann, C., Lipps, H.P., et al. (2005). Occurrence of Guignardia bidwellii, the causal agent of Black Rot on grapevine, in the vine growing areas of Rhineland-Palatinate, Germany. In: Proc. Int. Symposium on Introduction and Spread of Invasive Species. Berlin, Germany.

  • Hoffman, L. E., Wilcox, W. F., Gadoury, D. M., & Seem, R. C. (2002). Influence of grape berry age on susceptibility to Guignardia bidwellii and its incubation period length. Phytopathology, 92, 1068–1076.

    Article  PubMed  Google Scholar 

  • Hoffman, L. E., Wilcox, W. F., Gadoury, D. M., Seem, R. C., & Riegel, D. G. (2004). Integrated control of grape black rot: influence of host phenology, inoculum availability, sanitation, and spray timing. Phytopathology, 94, 641–650.

    Article  PubMed  Google Scholar 

  • Jailloux, F. (1992). In-vitro production of the teleomorph of Guignardia bidwellii, causal agent of black rot of grapevine. Canadian Journal of Botany, 70, 254–257.

    Article  Google Scholar 

  • Jeffers, J. N. R. (1978). An introduction to systems analysis: with ecological applications. London: Edward Arnold.

    Google Scholar 

  • Jermini, M., & Gessler, C. (1996). Epidemiology and control of grape black rot in southern Switzerland. Plant Disease, 80, 322–325.

    Article  Google Scholar 

  • Jhorar, O. P., Butler, D. R., & Mathauda, S. S. (1998). Effects of leaf wetness duration, relative humidity, light and dark on infection and sporulation by Didymella rabiei on chickpea. Plant Pathology, 47, 586–594.

    Article  Google Scholar 

  • Kranz, J., & Hau, B. (1980). Systems analysis in epidemiology. Annual Review of Phytopathology, 18, 67–83.

    Article  Google Scholar 

  • Lalancette, N., Foster, K. A., & Robison, D. M. (2003). Quantitative models for describing temperature and moisture effects on sporulation of Phomopsis amygdali on peach. Phytopathology, 93, 1165–1172.

    Article  CAS  PubMed  Google Scholar 

  • Leffelaar, P. A., & Ferrari, T. J. (1989). Some elements of dynamic simulations. In R. Rabbinge, S. A. Ward, & H. H. van Laar (Eds.), Simulation and systems management in crop protection (pp. 19–45). Wageningen: Pudoc.

    Google Scholar 

  • Lorenz, D. H., Eichhorn, K. W., Bleiholder, H., Klose, R., et al. (1995). Phenological growth stages of the grapevine. Vitis vinifera L. ssp. vinifera. Codes and descriptions according to the extended BBCH scale. Australian Journal of Grape and Wine Research, 1, 100–103.

    Article  Google Scholar 

  • Loskill, B., Molitor, D., Koch, E., Harms, M., et al. (2009). Management of Black rot (Guignardia bidwellii) in organic viticulture. Resource document. BÖL-Bericht-ID 17072. http://www.google.it/url?sa = t&rct = j&q = &esrc = s&source = web&cd = 1&ved = 0CDMQFjAA&url = http%3A%2F%2Forgprints.org%2F17072%2F1%2F17072-04OE032-jki-maixner-2009-schwarzfaeule.pdf&ei = Uih6U4qrKIaa1AWA_YCQDA&usg = AFQjCNEZ36UB0PINSzXtmm_S4uIEqWlaCQ&sig2 = LAOl8Bpraih58CuNJIPDJg&bvm = bv.66917471,d.d2k Accessed 19 May 2014.

  • Lovell, D. J., Powers, S. J., Welham, S. J., & Parker, S. R. (2004). A perspective on the measurement of time in plant disease epidemiology. Plant Pathology, 53, 705–712.

    Article  Google Scholar 

  • Luestner, G. (1935). Auftreten der Schwarzfäule (Black Rot) der Rebe in Deutschland. Nachr Dtsch Pflanzenschutzd, 15, 27.

    Google Scholar 

  • Madden, L. V., Hughes, G., & van den Bosch, F. (2007). The study of plant disease epidemics. St Paul: APS Press.

    Google Scholar 

  • Magarey, R. D., Sutton, T. B., & Thayer, C. L. (2005). A simple generic infection model for foliar fungal plant pathogens. Phytopathology, 95, 92–100.

    Article  CAS  PubMed  Google Scholar 

  • Maurin, G., Cartolaro, P., & Clerjeau, M. (1992). Black-rot: vers une methode de previsions des risques. IOBC/WPRS Bulletin, 15(2), 62.

    Google Scholar 

  • Molitor, D. (2009). Biologie und Bekämpfung der Schwarzfäule (Guignardia bidwellii) an Weinreben. Geisenheimer Berichte Bd. 65. Geisenheim (Germany): Gesellschaft zur Förderung der Forschungsanstalt.

  • Molitor, D., & Berkelmann-Loehnertz, B. (2011). Simulating the susceptibility of clusters to grape black rot infections depending on their phenological development. Crop Protection, 30, 1649–1654.

    Article  CAS  Google Scholar 

  • Molitor, D., Fruehauf, C., Baus, O., & Berkelmann-Loehnertz, B. (2012). A cumulative degree-day-based model to calculate the duration of the incubation period of Guignardia bidwellii. Plant Disease, 96, 1054–1059.

    Article  Google Scholar 

  • Mueller, K. (1934). Jahresbericht des BadischenWeinbauinstitutes in Freiburg i. B. für das Jahr, vol. 13.

  • Northover, P.R. (1998). The relationship of the number of wetting periods and accumulated degree-days to sporulation of Guignardia bidwellii (Ellis) Viala and Ravaz in vineyards. M.Sc. thesis. Pennsylvania State University.

  • Northover, P.R. (2008) Factors influencing the infection of cultivated grape (Vitis spp. section Euvitis) shoot tissue by Guignardia Bidwellii (Ellis) Viala and Ravaz. Ph. D. Thesis. Pennsylvania State University.

  • Northover, P. R., & Travis, J. W. (1998). Infection requirements of Guignardia bidwellii conidia on grapevine shoots. Phytopathology, 88, S68.

    Google Scholar 

  • Okoli, C., & Schabram, K. (2010). A Guide to Conducting a Systematic Literature Review of Information Systems Research. Sprouts: Working Papers on Information Systems 10:26. Resource document. http://sprouts.aisnet.org/10-26/. Accessed 01 April 2014.

  • Ramsdell, D. C., & Milholland, R. D. (1988). Black rot. In R. C. Pearson & A. C. Goheen (Eds.), Compendium of grape diseases (pp. 15–17). St. Paul: APS press.

    Google Scholar 

  • Rinaldi, P. A., & Mugnai, L. (2012). Marciume nero degli acini, potenziale pericolo in viticoltura. Informatore Agrario, 68, 68–70.

    Google Scholar 

  • Rossi, V., Caffi, T., Giosuè, S., & Bugiani, R. (2008). A mechanistic model simulating primary infections of downy mildew in grapevine. Ecological Modelling, 212, 480–491.

    Article  Google Scholar 

  • Rossi, V., Giosuè, S., & Caffi, T. (2010). Modelling plant diseases for decision making in crop protection. In E. C. Oerke, R. Gerhards, G. Menz, & R. A. Sikora (Eds.), Precision crop protection - the challenge and use of heterogeneity (pp. 241–258). Dordrecht: Springer Science.

    Chapter  Google Scholar 

  • Rossi, V., Caffi, T., & Salinari, F. (2012). Helping farmers face the increasing complexity of decision-making for crop protection. Phytopathologia Mediterranea, 3, 457–479.

    Google Scholar 

  • Rotem, J. (1988). Techniques of controlled-condition experiments. In J. Kranz & J. Rotem (Eds.), Experimental techniques in plant disease epidemiology (pp. 19–31). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Roussel, C. (1971). Etude comparative de l’évolution du mildiou et du black-rot de la vigne. Phytoma, 228, 19–24.

    Google Scholar 

  • Scribner, F.L. (1886). Report on the Fungus Diseases of the Grapevine. U. S. Dep. Agric. Bot. Div. Sect. Plant Pathol. Bull. 2 GPO, Washington D. C.

  • Shaw, M. W. (1990). Effects of temperature, leaf wetness and cultivar on the latent period of Mycosphaerella graminicola on winter wheat. Plant Pathology, 39, 255–268.

    Article  Google Scholar 

  • Shearer, B. J., & Zadoks, J. C. (1972). The latent period of septoria nodorum in wheat I. The effect of temperature and moisture treatments under controlled conditions. Netherlands Journal of Plant Pathology, 78, 231–241.

    Article  Google Scholar 

  • Spotts, R. A. (1977). Effect of leaf wetness duration and temperature on the infectivity of Guignardia bidwellii on grape leaves. Phytopathology, 76, 1378–1381.

    Article  Google Scholar 

  • Spotts, R. A. (1980). Infection of grape by Guignardia bidwellii-factors affecting lesion development, conidia dispersal and conidial populations on leaves. Phytopathology, 70, 252–255.

    Article  Google Scholar 

  • Vanderplank, J. E. (1963). Plant disease: epidemics and control. New York: Academic.

    Google Scholar 

  • Vanniasingham, V. M., & Gilligan, C. A. (1989). Effects of host, pathogen and environmental factors on latentperiod and production of pycnidia of Leptosphaeria maculans on oilseed rape leaves in controlled environments. Mycological Research, 93, 167–174.

    Article  Google Scholar 

  • Viala, P., & Pacottet, P. (1904). Recherches sue les maldies de la vigne: “Black-rot II, Sur le développment du Black-rot”, réceptivité des fruits, influence de la temperature, de l’humidité et des milieux toxique. Paris: Bordeaux de la “Revue de viticulture”.

  • Weber, M. (1987). Le Black-rot: éléments de biologie et moyens de lutte chimiqhe. Phytoma, 376, 43–46.

    Google Scholar 

  • Zadoks, J. C. (1971). Systems analysis and the dynamic of epidemics. Phytopathology, 61, 600–10.

    Article  Google Scholar 

  • Zins, C. (1999) Success - structured search strategy: information retrieval in the age of global information systems. Resource document. http://archive.ifla.org/IV/ifla65/papers/081-143e.htm. Accessed 01 April 2014.

Download references

Acknowledgments

Part of this work was performed within the EU funded project “Modem_IVM” (www.modem-ivm.eu) FP7-SME-2010-1, grant no. 262059. G. Onesti carried out this work within the Doctoral School on the Agro-Food System (Agrisystem) of the Università Cattolica del Sacro Cuore (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Rossi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Meta-synthesis of the literature used to develop the relational diagram of the life cycle of G. bidwelii (Fig. 1 and Tab. 1 of the article) and the different model compartments (DOCX 34 kb)

ESM 2

Description on how the literature data were used to develop the model equations for: maturation of ascospores in pseudothecia, infection severity on leaves and duration of latency (PDF 439 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossi, V., Onesti, G., Legler, S.E. et al. Use of systems analysis to develop plant disease models based on literature data: grape black-rot as a case-study. Eur J Plant Pathol 141, 427–444 (2015). https://doi.org/10.1007/s10658-014-0553-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0553-z

Keywords

Navigation