Skip to main content
Log in

Kidney function and risk of dementia: Observational study, meta-analysis, and two-sample mendelian randomization study

  • NEURO-EPIDEMIOLOGY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Whether impaired kidney function is associated with increased risk of developing dementia is unclear. We investigated the association between estimated glomerular filtration rate (eGFR) and dementia. Using a triangulation approach, we performed (1) a prospective study in 90,369 Danes from the Copenhagen General Population Study (CGPS), (2) a meta-analysis in 468,699 Scandinavians (including CGPS) and (3) a two-sample Mendelian randomization study in 218,792-1,004,040 Europeans using summary data from largest publicly available genome wide association studies (GWASs). During up to 15 years of follow-up (CGPS), 2,468 individuals developed dementia. Age and sex standardized percentile of eGFR below versus above the median conferred a multifactorially adjusted hazard ratio of 1.09 (95% confidence interval: 1.01–1.18). In meta-analysis, random-effects risk of dementia was 1.14 (1.06–1.22) for mildly decreased eGFR (60–90 mL/min/1.73 m2), 1.31 (0.92–1.87) for moderately decreased eGFR (30–59 mL/min/1.73 m2) and 1.91 (1.21–3.01) for severely decreased eGFR (< 30 mL/min/1.73 m2), compared to reference eGFR (> 90 mL/min/1.73 m2). Using directly comparable eGFR measures (log[eGFR] scaled to one standard deviation, as well as eGFR below versus above 60 mL/min/1.73 m2), we found no association with risk of dementia in observational CGPS or in Mendelian randomization analyses. In conclusion, impaired kidney function was associated with modestly increased risk of developing dementia. This was not supported by causal, genetic analyses using a Mendelian randomization approach. However, future stronger genetic instruments for kidney function and larger GWASs with more dementia cases, particularly for the vascular dementia subtype, warrant a re-evaluation of the causal hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arvanitakis Z, Shah RC, Bennett DA. Diagnosis and Management of Dementia. Rev JAMA. 2019;322(16):1589–99. doi:https://doi.org/10.1001/jama.2019.4782.

    Article  Google Scholar 

  2. Association As. 2021 Alzheimer’s disease facts and figures. Alzheimers Dement. 2021;17(3):327–406. doi:https://doi.org/10.1002/alz.12328.

  3. Goodman RA, Lochner KA, Thambisetty M, Wingo TS, Posner SF, Ling SM. Prevalence of dementia subtypes in United States Medicare fee-for-service beneficiaries, 2011–2013. Alzheimers Dement. 2017;13(1):28–37. doi:https://doi.org/10.1016/j.jalz.2016.04.002.

    Article  Google Scholar 

  4. de Bruijn RFAG, Bos MJ, Portegies MLP, et al. The potential for prevention of dementia across two decades: the prospective, population-based Rotterdam Study. BMC Med. 2015;13(1):132. doi:https://doi.org/10.1186/s12916-015-0377-5.

    Article  Google Scholar 

  5. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13(8):788–94. doi:https://doi.org/10.1016/s1474-4422(14)70136-x.

    Article  Google Scholar 

  6. Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011;10(9):819–28. doi:https://doi.org/10.1016/s1474-4422(11)70072-2.

    Article  Google Scholar 

  7. Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413–46. doi:https://doi.org/10.1016/S0140-6736(20)30367-6.

    Article  Google Scholar 

  8. Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis. 2003;41(1):1–12. doi:https://doi.org/10.1053/ajkd.2003.50007.

    Article  Google Scholar 

  9. Kjaergaard AD, Johannesen BR, Sørensen HT, Henderson VW, Christiansen CF. Kidney disease and risk of dementia: a Danish nationwide cohort study. BMJ Open. 2021;11(10):e052652. doi:https://doi.org/10.1136/bmjopen-2021-052652.

    Article  Google Scholar 

  10. Xu H, Garcia-Ptacek S, Trevisan M, et al. Kidney Function, Kidney Function Decline, and the Risk of Dementia in Older Adults: A Registry-Based Study. Neurology. 2021;96(24):e2956-e65. doi:https://doi.org/10.1212/wnl.0000000000012113.

    Article  Google Scholar 

  11. Gabin JM, Romundstad S, Saltvedt I, Holmen J. Moderately increased albuminuria, chronic kidney disease and incident dementia: the HUNT study. BMC Nephrol. 2019;20(1):261. doi:https://doi.org/10.1186/s12882-019-1425-8.

    Article  CAS  Google Scholar 

  12. Helmer C, Stengel B, Metzger M, et al. Chronic kidney disease, cognitive decline, and incident dementia: the 3 C Study. Neurology. 2011;77(23):2043–51. doi:https://doi.org/10.1212/WNL.0b013e31823b4765.

    Article  CAS  Google Scholar 

  13. Higuchi M, Chen R, Abbott RD, et al. Mid-life proteinuria and late-life cognitive function and dementia in elderly men: the Honolulu-Asia Aging Study. Alzheimer Dis Assoc Disord. 2015;29(3):200–5. doi:https://doi.org/10.1097/WAD.0000000000000082.

    Article  Google Scholar 

  14. O’Hare AM, Walker R, Haneuse S, et al. Relationship between longitudinal measures of renal function and onset of dementia in a community cohort of older adults. J Am Geriatr Soc. 2012;60(12):2215–22. doi:https://doi.org/10.1111/j.1532-5415.2012.04238.x.

    Article  Google Scholar 

  15. Paterson EN, Williams MA, Passmore P, et al. Estimated Glomerular Filtration Rate is not Associated with Alzheimer’s Disease in a Northern Ireland Cohort. J Alzheimers Dis. 2017;60(4):1379–85. doi:https://doi.org/10.3233/jad-170480.

    Article  CAS  Google Scholar 

  16. Seliger SL, Siscovick DS, Stehman-Breen CO, et al. Moderate renal impairment and risk of dementia among older adults: the Cardiovascular Health Cognition Study. J Am Soc Nephrol. 2004;15(7):1904–11. doi:https://doi.org/10.1097/01.asn.0000131529.60019.fa.

    Article  Google Scholar 

  17. Sundelöf J, Arnlöv J, Ingelsson E, et al. Serum cystatin C and the risk of Alzheimer disease in elderly men. Neurology. 2008;71(14):1072–9. doi:https://doi.org/10.1212/01.wnl.0000326894.40353.93.

    Article  CAS  Google Scholar 

  18. Takae K, Hata J, Ohara T, et al. Albuminuria Increases the Risks for Both Alzheimer Disease and Vascular Dementia in Community-Dwelling Japanese Elderly: The Hisayama Study. J Am Heart Assoc. 2018;7(2). doi:https://doi.org/10.1161/jaha.117.006693.

  19. Singh-Manoux A, Oumarou-Ibrahim A, Machado-Fragua MD, et al. Association between kidney function and incidence of dementia: 10-year follow-up of the Whitehall II cohort study. Age Ageing. 2022;51(1). doi:https://doi.org/10.1093/ageing/afab259.

  20. Bugnicourt JM, Godefroy O, Chillon JM, Choukroun G, Massy ZA. Cognitive disorders and dementia in CKD: the neglected kidney-brain axis. J Am Soc Nephrol. 2013;24(3):353–63. doi:https://doi.org/10.1681/asn.2012050536.

    Article  CAS  Google Scholar 

  21. Toyoda K, Ninomiya T. Stroke and cerebrovascular diseases in patients with chronic kidney disease. Lancet Neurol. 2014;13(8):823–33. doi:https://doi.org/10.1016/s1474-4422(14)70026-2.

    Article  Google Scholar 

  22. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12. doi:https://doi.org/10.7326/0003-4819-150-9-200905050-00006.

    Article  Google Scholar 

  23. Stevens LA, Schmid CH, Greene T, et al. Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study equations for estimating GFR levels above 60 mL/min/1.73 m2. Am J Kidney Dis. 2010;56(3):486–95. doi:https://doi.org/10.1053/j.ajkd.2010.03.026.

    Article  Google Scholar 

  24. Kang MW, Park S, Lee S, et al. Glomerular hyperfiltration is associated with dementia: A nationwide population-based study. PLoS ONE. 2020;15(1):e0228361. doi:https://doi.org/10.1371/journal.pone.0228361.

    Article  CAS  Google Scholar 

  25. Phung TK, Andersen BB, Høgh P, Kessing LV, Mortensen PB, Waldemar G. Validity of dementia diagnoses in the Danish hospital registers. Dement Geriatr Cogn Disord. 2007;24(3):220–8. doi:https://doi.org/10.1159/000107084.

    Article  Google Scholar 

  26. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658–65. doi:https://doi.org/10.1002/gepi.21758.

    Article  Google Scholar 

  27. Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol. 2016;40(7):597–608. doi:https://doi.org/10.1002/gepi.21998.

    Article  Google Scholar 

  28. Minelli C, Del Greco MF, van der Plaat DA, Bowden J, Sheehan NA, Thompson J. The use of two-sample methods for Mendelian randomization analyses on single large datasets. Int J Epidemiol. 2021;50(5):1651–9. doi:https://doi.org/10.1093/ije/dyab084.

    Article  Google Scholar 

  29. Stanzick KJ, Li Y, Schlosser P, et al. Discovery and prioritization of variants and genes for kidney function in > 1.2 million individuals. Nat Commun. 2021;12(1):4350. doi:https://doi.org/10.1038/s41467-021-24491-0.

    Article  CAS  Google Scholar 

  30. Wuttke M, Li Y, Li M, et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat Genet. 2019;51(6):957–72. doi:https://doi.org/10.1038/s41588-019-0407-x.

    Article  CAS  Google Scholar 

  31. Burgess S, Labrecque JA. Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates. Eur J Epidemiol. 2018;33(10):947–52. doi:https://doi.org/10.1007/s10654-018-0424-6.

    Article  Google Scholar 

  32. Kurki MI, Karjalainen J, Palta P, et al. FinnGen: Unique genetic insights from combining isolated population and national health register data. medRxiv. 2022:2022.03.03.22271360. doi:https://doi.org/10.1101/2022.03.03.22271360.

  33. Jansen IE, Savage JE, Watanabe K, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet. 2019;51(3):404–13. doi:https://doi.org/10.1038/s41588-018-0311-9.

    Article  CAS  Google Scholar 

  34. Wolters FJ, Chibnik LB, Waziry R, et al. Twenty-seven-year time trends in dementia incidence in Europe and the United States: The Alzheimer Cohorts Consortium. Neurology. 2020;95(5):e519-e31. doi:https://doi.org/10.1212/wnl.0000000000010022.

    Article  Google Scholar 

  35. Welberry HJ, Brodaty H, Hsu B, Barbieri S, Jorm LR. Measuring dementia incidence within a cohort of 267,153 older Australians using routinely collected linked administrative data. Sci Rep. 2020;10(1):8781. doi:https://doi.org/10.1038/s41598-020-65273-w.

    Article  CAS  Google Scholar 

  36. Jamshidi P, Najafi F, Mostafaei S, et al. Investigating associated factors with glomerular filtration rate: structural equation modeling. BMC Nephrol. 2020;21(1):30. doi:https://doi.org/10.1186/s12882-020-1686-2.

    Article  Google Scholar 

  37. Lawlor DA, Tilling K, Davey Smith G. Triangulation in aetiological epidemiology. Int J Epidemiol. 2017;45(6):1866–86. doi:https://doi.org/10.1093/ije/dyw314.

    Article  Google Scholar 

  38. Burgess S, Davey Smith G, Davies NM, et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 2019;4:186. doi:https://doi.org/10.12688/wellcomeopenres.15555.2.

    Article  Google Scholar 

Download references

Acknowledgements

We want to acknowledge the participants and investigators/consortia of the studies used here, namely: CGPS (Copenhagen General Population Study), FinnGen, ADSP (Alzheimer’s Disease Sequencing Project), IGAP (International Genomics of Alzheimer’s Project), PGC-ALZ (Psychiatric Genomics Consortium’s working group on Alzheimer’s disease), UKB (UK Biobank) and CKDGen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisa D. Kjaergaard.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kjaergaard, A.D., Ellervik, C., Witte, D.R. et al. Kidney function and risk of dementia: Observational study, meta-analysis, and two-sample mendelian randomization study. Eur J Epidemiol 37, 1273–1284 (2022). https://doi.org/10.1007/s10654-022-00923-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-022-00923-z

Keywords

Navigation