Skip to main content

Advertisement

Log in

Assessing health risks in bottled water: chemical compounds and their impact on human health

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Bottled mineral and spring water constitute one of the main sources of drinking water. Relevant legal acts in each country individually regulate the highest permitted concentrations of harmful substances in these waters. However, current regulations do not take into account newly emerging contaminants such as BPA. Analysis of the chemical composition of 72 bottled waters from the Polish market showed that undesirable elements occur in quantities that do not exceed the maximum permissible concentrations. Special attention should be paid to bottled therapeutic water, which may contain elevated concentrations of some micronutrients, such as Al, B, Ba, Fe, Mn, or Sr contributing to the pattern of health risk with excessive consumption of this type of water. The presence of BPA was confirmed in 25 tested waters. The calculated hazard index values showed that the most exposed group are children up to 12 years of age. The greatest attention should be paid to waters with high mineralisation, for which the calculated risk values are the highest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acarer, S. (2023). Abundance and characteristics of microplastics in drinking water treatment plants, distribution systems, water from refill kiosks, tap waters and bottled waters. Science of the Total Environment, 884, 163866. https://doi.org/10.1016/j.scitotenv.2023.163866

    Article  CAS  Google Scholar 

  • Akhbarizadeh, R., Dobaradaran, S., Schmidt, T. C., Nabipour, I., & Spitz, J. (2020). Worldwide bottled water occurrence of emerging contaminants: A review of the recent scientific literature. Journal of Hazardous Materials, 392, 122271. https://doi.org/10.1016/j.jhazmat.2020.122271

    Article  CAS  Google Scholar 

  • Andra, S. S., Makris, K. C., Shine, J. P., & Lu, C. (2012). Co-leaching of brominated compounds and antimony from bottled water. Environment International, 38(1), 45–53. https://doi.org/10.1016/j.envint.2011.08.007

    Article  CAS  Google Scholar 

  • Aneck-Hahn, N. H., Van Zijl, M. C., Swart, P., Truebody, B., Genthe, B., Charmier, J., & Jager, C. D. (2018). Estrogenic activity, selected plasticizers and potential health risks associated with bottled water in South Africa. Journal of Water and Health, 16(2), 253–262. https://doi.org/10.2166/wh.2018.043

    Article  Google Scholar 

  • Bertoldi, D., Bontempo, L., Larcher, R., Nicolini, G., Voerkelius, S., Lorenz, G. D., Ueckermann, H., Froeschl, H., Baxter, M. J., Hoogewerff, J., & Brereton, P. (2011). Survey of the chemical composition of 571 European bottled mineral waters. Journal of Food Composition and Analysis, 24(3), 376–385. https://doi.org/10.1016/j.jfca.2010.07.005

    Article  CAS  Google Scholar 

  • Bityukova, L., & Petersell, V. (2010). Chemical composition of bottled mineral waters in Estonia. Journal of Geochemical Exploration, 107(3), 238–244. https://doi.org/10.1016/j.gexplo.2010.07.006

    Article  CAS  Google Scholar 

  • Bradley, P. M., Romanok, K. M., Smalling, K. L., Focazio, M. J., Evans, N., Fitzpatrick, S. C., Givens, C. E., Gordon, S. E., Gray, J. L., Green, E. M., Griffin, D. W., Hladik, M. L., Kanagy, L. K., Lisle, J. T., Loftin, K. A., Blaine McCleskey, R., Medlock-Kakaley, E. K., Navas-Acien, A., Roth, D. A., & Weis, C. P. (2023). Bottled water contaminant exposures and potential human effects. Environment International. https://doi.org/10.1016/j.envint.2022.107701

    Article  Google Scholar 

  • Burlingame, G. A., Dietrich, A. M., & Whelton, A. J. (2007). Understanding the basics of tap water taste. Journal AWWA, 99(5), 100–111.

    Article  CAS  Google Scholar 

  • Caldwell, D. J., Mastrocco, F., Nowak, E., Johnston, J., Yekel, H., Pfeiffer, D., Hoyt, M., DuPlessie, B. M., & Anderson, P. D. (2010). An assessment of potential exposure and risk from estrogens in drinking water. Environmental Health Perspectives. https://doi.org/10.1289/ehp.0900654.S1

    Article  Google Scholar 

  • Careghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2015). Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: A review. Environmental Science and Pollution Research, 22(8), 5711–5741. https://doi.org/10.1007/s11356-014-3974-5

    Article  CAS  Google Scholar 

  • Carmona, E., Andreu, V., & Picó, Y. (2014). Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: From waste to drinking water. Science of the Total Environment, 484(1), 53–63. https://doi.org/10.1016/j.scitotenv.2014.02.085

    Article  CAS  Google Scholar 

  • Chang, H., Wan, Y., Naile, J., Zhang, X., Wiseman, S., Hecker, M., ... & Jones, P. D. (2010). Simultaneous quantification of multiple classes of phenolic compounds in blood plasma by liquid chromatography–electrospray tandem mass spectrometry. Journal of Chromatography A, 1217(4), 506–513.

  • Cerar, S., & Mali, N. (2016). Assessment of presence, origin and seasonal variations of persistent organic pollutants in groundwater by means of passive sampling and multivariate statistical analysis. In Journal of Geochemical Exploration, 170, 78–93. https://doi.org/10.1016/j.gexplo.2016.08.016

    Article  CAS  Google Scholar 

  • Chen, Y., Xu, H., Luo, Y., Ding, Y., Huang, J., Wu, H., Han, J., Du, L., Kang, A., Jia, M., Xiong, W., & Yang, Z. (2023). Plastic bottles for chilled carbonated beverages as a source of microplastics and nanoplastics. Water Research. https://doi.org/10.1016/j.watres.2023.120243

    Article  Google Scholar 

  • Collins, H., & Wright, A. (2014). Still sparkling: The phenomenon of bottled water-an Irish context. Journal of Marketing Management, 2(1), 15–31.

    Google Scholar 

  • De Giglio, O., Quaranta, A., Lovero, G., Caggiano, G., & Montagna, M. T. (2015). Mineral water or tap water? An endless debate. Annali Di Igiene: Medicina Preventiva e Di Comunità, 27(1), 58–65. https://doi.org/10.7416/ai.2015.2023

    Article  Google Scholar 

  • de Lambert, J. R., Walsh, J. F., Scher, D. P., Firnstahl, A. D., & Borchardt, M. A. (2021). Microbial pathogens and contaminants of emerging concern in groundwater at an urban subsurface stormwater infiltration site. Science of the Total Environment, 775, 145738. https://doi.org/10.1016/j.scitotenv.2021.145738

    Article  CAS  Google Scholar 

  • Dévier, M. H., Le Menach, K., Viglino, L., Di Gioia, L., Lachassagne, P., & Budzinski, H. (2013). Ultra-trace analysis of hormones, pharmaceutical substances, alkylphenols and phthalates in two French natural mineral waters. Science of the Total Environment, 443, 621–632. https://doi.org/10.1016/j.scitotenv.2012.10.015

    Article  CAS  Google Scholar 

  • Dinelli, E., Lima, A., Albanese, S., Birke, M., Cicchella, D., Giaccio, L., Valera, P., & De Vivo, B. (2012). Comparative study between bottled mineral and tap water in Italy. Journal of Geochemical Exploration, 112, 368–389. https://doi.org/10.1016/j.gexplo.2011.11.002

    Article  CAS  Google Scholar 

  • Dinelli, E., Lima, A., De Vivo, B., Albanese, S., Cicchella, D., & Valera, P. (2010). Hydrogeochemical analysis on Italian bottled mineral waters: Effects of geology. Journal of Geochemical Exploration, 107(3), 317–335. https://doi.org/10.1016/j.gexplo.2010.06.004

    Article  CAS  Google Scholar 

  • Dippong, T., Hoaghia, M. A., Mihali, C., Cical, E., & Calugaru, M. (2020). Human health risk assessment of some bottled waters from Romania. Environmental Pollution. https://doi.org/10.1016/j.envpol.2020.115409

    Article  Google Scholar 

  • Directive. (2003). Commission Directive 2003/40/EC of 16 May 2003 establishing the list, concentration limits and labelling requirements for the constituents of natural mineral waters and the conditions for using ozone-enriched air for the treatment of natural mineral waters and spring waters. Official Journal of the European Union.

  • Directive. (2006). Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Official Journal of the European Union.

  • Directive. (2009). Directive 2009/54/EC of the European Parliament and of the Council of 18 June 2009 on the exploitation and marketing of natural mineral waters. Official Journal of the European Union.

  • Directive. (2020). Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption. Official Journal of the European Union.

  • Doria, M. F. (2006). Bottled water versus tap water: Understanding consumer’s preferences. Journal of Water and Health, 4(2), 271–276. https://doi.org/10.2166/wh.2006.008

    Article  Google Scholar 

  • Dueñas-Moreno, J., Mora, A., Cervantes-Avilés, P., & Mahlknecht, J. (2022). Groundwater contamination pathways of phthalates and bisphenol A: origin, characteristics, transport, and fate—A review. In Environment International. https://doi.org/10.1016/j.envint.2022.107550

    Article  Google Scholar 

  • Edokpayi, J. N., Enitan, A. M., Mutileni, N., & Odiyo, J. O. (2018). Evaluation of water quality and human risk assessment due to heavy metals in groundwater around Muledane area of Vhembe District, Limpopo Province South Africa. Chemistry Central Journal, 12(1), 1–16. https://doi.org/10.1186/s13065-017-0369-y

    Article  CAS  Google Scholar 

  • Egbueri, J. C., & Mgbenu, C. N. (2020). Chemometric analysis for pollution source identification and human health risk assessment of water resources in Ojoto Province, southeast Nigeria. Applied Water Science. https://doi.org/10.1007/s13201-020-01180-9

    Article  Google Scholar 

  • Fallahzadeh, R. A., Ghaneian, M. T., Miri, M., & Dashti, M. M. (2017). Spatial analysis and health risk assessment of heavy metals concentration in drinking water resources. Environmental Science and Pollution Research, 24(32), 24790–24802. https://doi.org/10.1007/s11356-017-0102-3

    Article  CAS  Google Scholar 

  • Felipe-Sotelo, M., Henshall-Bell, E. R., Evans, N. D. M., & Read, D. (2015). Comparison of the chemical composition of British and Continental European bottled waters by multivariate analysis. Journal of Food Composition and Analysis, 39, 33–42. https://doi.org/10.1016/j.jfca.2014.10.014

    Article  CAS  Google Scholar 

  • Gao, J., Li, Z., Chen, Z., Zhou, Y., Liu, W., Wang, L., & Zhou, J. (2021). Deterioration of groundwater quality along an increasing intensive land use pattern in a small catchment. Agricultural Water Management. https://doi.org/10.1016/j.agwat.2021.106953

    Article  Google Scholar 

  • ISO. (1989). ISO 9297:1989—Water Quality—Determination of Chloride—Silver Nitrate Titration with Chromate Indicator (Mohr’s method). Geneva: International Organization for Standardization.

    Google Scholar 

  • ISO. (1994). ISO 9963–1:1994—Water Quality—Determination of Alkalinity—Part 1: Determination of Total and Composite Alkalinity. Geneva: International Organization for Standardization.

    Google Scholar 

  • ISO. (2007). ISO 11885—Water quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Geneva: International Organization for Standardization.

    Google Scholar 

  • ISO. (2016a). ISO 17034:2016—General Requirements for the Competence of Reference Material Producers. Geneva: International Organization for Standardization.

    Google Scholar 

  • ISO. (2016b). ISO 17294–2—Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 2: Determination of Selected Elements Including Uranium Isotopes. Geneva: International Organization for Standardization.

    Google Scholar 

  • ISO. (2017). ISO/IEC 17025:2017—General requirements for the competence of testing and calibration laboratories.

  • Jaiswal, D. K., Kumar, N., & Yadav, R. R. (2022). Analytical solution for transport of pollutant from time-dependent locations along groundwater. Journal of Hydrology, 610, 127826. https://doi.org/10.1016/j.jhydrol.2022.127826

    Article  CAS  Google Scholar 

  • Jarosz, M., Rychlik, E., Stoś, K., & Charzewska, J. (Eds.). (2020). Normy żywienia dla populacji Polski i ich zastosowanie. Narodowy Instytut Zdrowia Publicznego—Państwowy Zakład Higieny.

  • K’oreje, K., Okoth, M., Van Langenhove, H., & Demeestere, K. (2022). Occurrence and point-of-use treatment of contaminants of emerging concern in groundwater of the Nzoia River basin Kenya. Environmental Pollution, 297, 118725. https://doi.org/10.1016/j.envpol.2021.118725

    Article  CAS  Google Scholar 

  • Koroša, A., & Mali, N. (2022). Control of organic contaminants in groundwater by passive sampling and multivariate statistical analysis. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2022.115440

    Article  Google Scholar 

  • Lake, I. R., Lovett, A. A., Hiscock, K. M., Betson, M., Foley, A., Sünnenberg, G., Evers, S., & Fletcher, S. (2003). Evaluating factors influencing groundwater vulnerability to nitrate pollution: Developing the potential of GIS. Journal of Environmental Management, 68(3), 315–328. https://doi.org/10.1016/S0301-4797(03)00095-1

    Article  Google Scholar 

  • Lapworth, D. J., Lopez, B., Laabs, V., Kozel, R., Wolter, R., Ward, R., Vargas Amelin, E., Besien, T., Claessen, J., Delloye, F., Ferretti, E., & Grath, J. (2019). Developing a groundwater watch list for substances of emerging concern: A European perspective. Environmental Research Letters, 14(3), 035004. https://doi.org/10.1088/1748-9326/aaf4d7

    Article  Google Scholar 

  • Le Coadou, L., Le Ménach, K., Labadie, P., Dévier, M. H., Pardon, P., Augagneur, S., & Budzinski, H. (2017). Quality survey of natural mineral water and spring water sold in France: Monitoring of hormones, pharmaceuticals, pesticides, perfluoroalkyl substances, phthalates, and alkylphenols at the ultra-trace level. Science of the Total Environment, 603–604, 651–662. https://doi.org/10.1016/j.scitotenv.2016.11.174

    Article  CAS  Google Scholar 

  • Li, J., Chen, Y., Lu, H., & Zhai, W. (2021). Spatial distribution of heavy metal contamination and uncertainty-based human health risk in the aquatic environment using multivariate statistical method. Environmental Science and Pollution Research, 28, 22804–22822. https://doi.org/10.1007/s11356-020-12212-x/Published

    Article  CAS  Google Scholar 

  • Li, J., Zhou, B., Liu, Y., Yang, Q., & Cai, W. (2008). Influence of the coexisting contaminants on bisphenol A sorption and desorption in soil. Journal of Hazardous Materials, 151(2–3), 389–393. https://doi.org/10.1016/j.jhazmat.2007.06.001

    Article  CAS  Google Scholar 

  • Li, X., Ying, G. G., Su, H. C., Yang, X. B., & Wang, L. (2010). Simultaneous determination and assessment of 4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles. Environment International, 36(6), 557–562. https://doi.org/10.1016/j.envint.2010.04.009

    Article  CAS  Google Scholar 

  • Lukač Reberski, J., Terzić, J., Maurice, L. D., & Lapworth, D. J. (2022). Emerging organic contaminants in karst groundwater: A global level assessment. In Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2021.127242

    Article  Google Scholar 

  • Lyubomirova, V., Mihaylova, V., & Djingova, R. (2020). Chemical characterization of Bulgarian bottled mineral waters. Journal of Food Composition and Analysis, 93, 103595. https://doi.org/10.1016/j.jfca.2020.103595

    Article  CAS  Google Scholar 

  • Maggioni, S., Balaguer, P., Chiozzotto, C., & Benfenati, E. (2013). Screening of endocrine-disrupting phenols, herbicides, steroid estrogens, and estrogenicity in drinking water from the waterworks of 35 Italian cities and from PET-bottled mineral water. Environmental Science and Pollution Research, 20(3), 1649–1660. https://doi.org/10.1007/s11356-012-1075-x

    Article  CAS  Google Scholar 

  • Miller, J., & Miller, J. C. (2018). Statistics and Chemometrics for Analytical Chemistry. London: Pearson education.

    Google Scholar 

  • Mirzabeygi, M., Abbasnia, A., Yunesian, M., Nodehi, R. N., Yousefi, N., Hadi, M., & Mahvi, A. H. (2017). Heavy metal contamination and health risk assessment in drinking water of Sistan and Baluchistan, Southeastern Iran. Human and Ecological Risk Assessment, 23(8), 1893–1905. https://doi.org/10.1080/10807039.2017.1322895

    Article  CAS  Google Scholar 

  • Mohammadi, A. A., Zarei, A., Majidi, S., Ghaderpoury, A., Hashempour, Y., Saghi, M. H., Alinejad, A., Yousefi, M., Hosseingholizadeh, N., & Ghaderpoori, M. (2019). Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad Iran. Methodsx, 6, 1642–1651. https://doi.org/10.1016/j.mex.2019.07.017

    Article  Google Scholar 

  • Mooney, D., Richards, K. G., Danaher, M., Grant, J., Gill, L., Mellander, P. E., & Coxon, C. E. (2020). An investigation of anticoccidial veterinary drugs as emerging organic contaminants in groundwater. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.141116

    Article  Google Scholar 

  • Mukherjee, I., & Singh, U. K. (2022). Environmental fate and health exposures of the geogenic and anthropogenic contaminants in potable groundwater of Lower Ganga Basin. India. Geoscience Frontiers, 13(3), 101365.

    Article  CAS  Google Scholar 

  • Pan, Z., Lu, W., Wang, H., & Bai, Y. (2023). Groundwater contaminant source identification based on an ensemble learning search framework associated with an auto xgboost surrogate. Environmental Modelling and Software. https://doi.org/10.1016/j.envsoft.2022.105588

    Article  Google Scholar 

  • Peh, Z., Šorša, A., & Halamić, J. (2010). Composition and variation of major and trace elements in Croatian bottled waters. Journal of Geochemical Exploration, 107(3), 227–237. https://doi.org/10.1016/j.gexplo.2010.02.002

    Article  CAS  Google Scholar 

  • Quansah, F., Okoe, A., & Angenu, B. (2015). Factors affecting ghanaian consumers’ purchasing decision of bottled water. International Journal of Marketing Studies. https://doi.org/10.5539/ijms.v7n5p76

    Article  Google Scholar 

  • Reimann, C., Birke, M., & Filzmoser, P. (2010). Bottled drinking water: Water contamination from bottle materials (glass, hard PET, soft PET), the influence of colour and acidification. Applied Geochemistry, 25(7), 1030–1046. https://doi.org/10.1016/j.apgeochem.2010.04.009

    Article  CAS  Google Scholar 

  • Reimann, C., Birke, M., & Filzmoser, P. (2012). Temperature-dependent leaching of chemical elements from mineral water bottle materials. Applied Geochemistry, 27(8), 1492–1498. https://doi.org/10.1016/j.apgeochem.2012.05.003

    Article  CAS  Google Scholar 

  • Reimann, C., Grimstvedt, A., Frengstad, B., & Finne, T. E. (2007). White HDPE bottles as source of serious contamination of water samples with Ba and Zn. Science of the Total Environment, 374(2–3), 292–296. https://doi.org/10.1016/j.scitotenv.2006.12.035

    Article  CAS  Google Scholar 

  • Report. (2021). Bottled Water Market Size, Share & Trends Analysis Report By Product (Purified, Mineral, Spring, Sparkling, Distilled), By Region (North America, Asia Pacific, Europe, CSA, MEA), And Segment Forecasts, 2021–2028.

  • RMH. (2011). Regulation of the Minister of Health of 31 March 2011 on natural mineral waters, spring waters and table waters.

  • Rusiniak, P., Kmiecik, E., Wątor, K., Duda, R., & Bugno, R. (2021). Pharmaceuticals and personal care products in the urban groundwater–preliminary monitoring (case study: Kraków, Southern Poland). Urban Water Journal, 18(5), 364–374. https://doi.org/10.1080/1573062X.2021.1893354

    Article  Google Scholar 

  • Shehu, Z., Nyakairu, G. W. A., Tebandeke, E., & Odume, O. N. (2022). Overview of African water resources contamination by contaminants of emerging concern. Science of the Total Environment, 852, 158303. https://doi.org/10.1016/j.scitotenv.2022.158303

    Article  CAS  Google Scholar 

  • Smedley, P. L. (2010). A survey of the inorganic chemistry of bottled mineral waters from the British Isles. Applied Geochemistry, 25(12), 1872–1888. https://doi.org/10.1016/j.apgeochem.2010.10.003

    Article  CAS  Google Scholar 

  • Stanhope, J., Weinstein, P., & Cook, A. (2018). Do natural spring waters in Australia and New Zealand affect health? A systematic review. Journal of Water and Health, 16(1), 1–13. https://doi.org/10.2166/wh.2017.209

    Article  Google Scholar 

  • Stefano, P. H. P., Roisenberg, A., Santos, M. R., Dias, M. A., & Montagner, C. C. (2022). Unraveling the occurrence of contaminants of emerging concern in groundwater from urban setting: A combined multidisciplinary approach and self-organizing maps. Chemosphere, 299, 134395.

    Article  CAS  Google Scholar 

  • Theodorsson-Norheim, E. (1986). Kruskal–Wallis test: BASIC computer program to perform nonparametric one-way analysis of variance and multiple comparisons on ranks of several independent samples.

  • U.S. EPA. (1989). Risk Assessment Guidance for Superfund (RAGS): Part A. http://www.epa.gov/swerrims/riskassessment/risk_superfund.html

  • U.S. EPA. (2002). National recommended water quality criteria.

  • U.S. EPA. (2003). Framework for Cumulative Risk Assessment.

  • U.S. EPA. (2006b). Provisional Peer Reviewed Toxicity Values for Iron and Compounds.

  • U.S. EPA. (2006a). Provisional Peer Reviewed Toxicity Values for Aluminium.

  • U.S. EPA. (2019). Guidelines for Human Exposure Assessment Risk Assessment. www.epa.gov/risk

  • Umoafia, N., Joseph, A., Edet, U., Nwaokorie, F., Henshaw, O., Edet, B., Asanga, E., Mbim, E., Chikwado, C., & Obeten, H. (2023). Deterioration of the quality of packaged potable water (bottled water) exposed to sunlight for a prolonged period: An implication for public health. Food and Chemical Toxicology, 175, 113728. https://doi.org/10.1016/j.fct.2023.113728

    Article  CAS  Google Scholar 

  • Vareda, J. P., Valente, A. J. M., & Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. In Journal of Environmental Management, 246, 101–118. https://doi.org/10.1016/j.jenvman.2019.05.126

    Article  CAS  Google Scholar 

  • Vrba, J. (2003). Intensive use of groundwater. Challenges and opportunities.

  • Wang, H., Liu, Z., Tang, Z., Zhang, J., Yin, H., Dang, Z., Wu, P. X., & Liu, Y. (2020a). Bisphenol analogues in Chinese bottled water: Quantification and potential risk analysis. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.136583

    Article  Google Scholar 

  • Wang, H., Liu, Z., Zhang, J., Huang, R. P., Yin, H., & Dang, Z. (2020b). Human exposure of bisphenol A and its analogues: Understandings from human urinary excretion data and wastewater-based epidemiology. Environmental Science and Pollution Research, 27(3), 3247–3256. https://doi.org/10.1007/s11356-019-07111-9

    Article  CAS  Google Scholar 

  • Wątor, K., Rusiniak, P., Martyna, A., Kmiecik, E., & Postawa, A. (2021). Human health risk assessment of trace elements in tap water and the factors influencing its value. Minerals. https://doi.org/10.3390/min11111291

    Article  Google Scholar 

  • Westerhoff, P., Prapaipong, P., Shock, E., & Hillaireau, A. (2008). Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water. Water Research, 42(3), 551–556. https://doi.org/10.1016/j.watres.2007.07.048

    Article  CAS  Google Scholar 

  • Zeng, J., Tabelin, C. B., Gao, W., Tang, L., Luo, X., Ke, W., Jiang, J., & Xue, S. (2023). Heterogeneous distributions of heavy metals in the soil-groundwater system empowers the knowledge of the pollution migration at a smelting site. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2022.140307

    Article  Google Scholar 

  • Zhao, M., Jiang, Y., Jia, Y., Lian, X., Feng, F., Shang, C., Zang, Y., & Xi, B. (2023). Anthropogenic perturbation enhances the release of geogenic Mn to groundwater: Evidence from hydrogeochemical characteristics. Science of the Total Environment, 891, 164450. https://doi.org/10.1016/j.scitotenv.2023.164450

    Article  CAS  Google Scholar 

  • Zheng, X., Zhao, W., Yan, X., Shu, T., Xiong, Q., & Chen, F. (2015). Pollution characteristics and health risk assessment of airborne heavy metals collected from Beijing bus stations. International Journal of Environmental Research and Public Health, 12(8), 9658–9671. https://doi.org/10.3390/ijerph120809658

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research project was supported by programme “Excellence initiative—research university” for the AGH University of Krakow and partially by the Faculty of Geology, Geophysics and Environmental Protection, grant no. 16.16.140.315.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

EK, PR, KW, and VRV were involved in conceptualization; EK, KW, and PR helped in methodology, PR and KW contributed to validation, PR and KW assisted in formal analysis, RB, PR, and KW helped in investigations, PR and KW helped in writing—original draft, EK, PR, KW, and VRV contributed to writing—review & editing, PR and KW were involved in visualization.

Corresponding author

Correspondence to Katarzyna Wątor.

Ethics declarations

Conflict of interest

The author would like to clarify that there are no competing interests that could have infuenced the design, implementation, analysis, or reporting of this study. There are no financial, personal, or professional relationships that could be perceived as potential Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 624 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wątor, K., Rusiniak, P., Kmiecik, E. et al. Assessing health risks in bottled water: chemical compounds and their impact on human health. Environ Geochem Health 46, 178 (2024). https://doi.org/10.1007/s10653-024-01908-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-024-01908-5

Keywords

Navigation