Skip to main content
Log in

Contamination level, spatial distribution, and sources of potentially toxic elements in indoor settled household dusts in Tehran, Iran

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Tehran, the capital city of Iran, has been facing air pollution for several decades due to rapid urbanization, population growth, improper vehicle use, and the low quality of fuels. In this study, 31 indoor dust samples were collected passively from residential and commercial buildings located in the central and densely populated districts of the city. These samples were analyzed after preparation to measure the concentration of elements (As, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, Sr, V, Zn). Statistical data analyses were employed to compare their relationship across various uses, variations, and for source identification. Geochemical indices of contamination factor (CF) and pollution load index (PLI) were utilized to evaluate the degree of contamination. The mean concentrations of Zn, Cu, and Pb (938, 206, and 176 µg g−1, respectively) are 6, 5, and 3 times higher than their mean values in worldwide urban soils. Additionally, Cd, Mo, and Ni showed concentrations about 1.5 times higher, while As, Co, Cr, Mn, and Sr fell within the range of reference soils. Be, V, and Sb displayed remarkably lower mean values. Building use did not significantly influence element levels in indoor deposited dust except for Pb and Zn. A comparison of indoor concentrations with previously published data for outdoor dusts revealed higher enrichments of Mo, Cu, Pb, and Ni, while As, Cd, and Zn showed lower enrichments in street dust samples. The order of CF values indicated Hg > Zn > Cd > Pb > Cu > As > Ni > Cr > Co > V. For Hg, Zn, Pb, Cd, and Cu, all or almost all samples exhibited very high contamination. PLI values were consistently higher than 1, indicating contamination in all samples. Multivariate statistical analysis and Tehran’s specific geological location suggested that mafic-intermediate volcanic rocks are primary sources for Cr, Cu, Fe, and Ni (PC1). As, Pb, and V (PC2) were attributed to fossil fuel combustion in vehicles and residential buildings. Pb is a legacy metal remaining from the use of leaded gasoline, which was phased out in the 1990s. Zn (PC3) is derived from vehicle tires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdulraheem, M. O., Adeniran, J. A., Ameen, H. A., Odediran, E. T., Yusuf, M. N. O., & Abdulraheem, K. A. (2022). Source identification and health risk assessments of heavy metals in indoor dusts of Ilorin, north central Nigeria. Journal of Environmental Health Science and Engineering, 20(1), 315–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adeniran, J. A., Araromi, D. O., Yusuf, R. O., Jimoda, L. A., Oke, E. O., & Sonibare, J. A. (2019). Analytical modeling of human exposure from short-term point source releases of aerosols from household spray products. Science and Technology for the Built Environment, 25(1), 83–90. https://doi.org/10.1080/23744731.2018.1499383

    Article  Google Scholar 

  • Aghadadashi, V., Neyestani, M. R., Mehdinia, A., Bakhtiari, A. R., Molaei, S., Farhangi, M., & Gerivani, H. (2019). Spatial distribution and vertical profile of heavy metals in marine sediments around Iran’s special economic energy zone; Arsenic as an enriched contaminant. Marine Pollution Bulletin, 138, 437–450.

    Article  CAS  PubMed  Google Scholar 

  • Ajmone-Marsan, F., & Biasioli, M. (2010). Trace elements in soils of urban areas. Water, Air, & Soil Pollution, 213, 121–143.

    Article  ADS  CAS  Google Scholar 

  • Al Hejami, A., Davis, M., Prete, D., Lu, J., & Wang, S. (2020). Heavy metals in indoor settled dusts in Toronto. Canada. Science of the Total Environment, 703, 134895.

    Article  ADS  Google Scholar 

  • Albanese, S., & Cicchella, D. (2012). Legacy problems in urban geochemistry. Elements, 8(6), 423–428. https://doi.org/10.2113/gselements.8.6.423

    Article  ADS  CAS  Google Scholar 

  • Al-Chalabi, A. S., & Hawker, D. (1997). Response of vehicular lead to the presence of street dust in the atmospheric environment of major roads. Science of the Total Environment, 206(2–3), 195–202.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Alekseenko, V., & Alekseenko, A. (2014). The abundances of chemical elements in urban soils. Journal of Geochemical Exploration, 147, 245–249. https://doi.org/10.1016/j.gexplo.2014.08.003

    Article  CAS  Google Scholar 

  • Ali-Taleshi, M. S., Feiznia, S., Shahbazi, R., & Squizzato, S. (2020). Characterization and source identification of heavy metals in atmospheric deposited dust of Tehran in 2018. Health, 6(1), 56–69.

    Google Scholar 

  • Alloway, B.J., 2013. Sources of Heavy Metals and Metalloids in Soils. In: Alloway, B. (Eds) Heavy Metals in Soils. Environmental Pollution, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4470-7_2

  • Alotaibi, M. O., Albedair, L. A., Alotaibi, N. M., Elobeid, M. M., Al-Swadi, H. A., Alasmary, Z., & Ahmad, M. (2022). Pollution indexing and health risk assessment of heavy-metals-laden indoor and outdoor dust in elementary school environments in Riyadh Saudi Arabia. Atmosphere, 13(3), 464. https://doi.org/10.3390/atmos13030464

    Article  ADS  CAS  Google Scholar 

  • Argyraki, A., & Kelepertzis, E. (2014). Urban soil geochemistry in Athens, Greece: The importance of local geology in controlling the distribution of potentially harmful trace elements. Science of the Total Environment, 482, 366–377.

    Article  ADS  PubMed  Google Scholar 

  • Ariapak, S., Jalalian, A., & Honarjoo, N. (2022). Source identification, seasonal and spatial variations of airborne dust trace elements pollution in Tehran, the capital of Iran. Urban Climate, 42, 101049.

    Article  Google Scholar 

  • Asvad, S. R., Esmaili-Sari, A., Bahramifar, N., Behrooz, R. D., Paschalidou, A. K., & Kaskaoutis, D. G. (2023). Heavy metals contamination status and health risk assessment of indoor and outdoor dust in Ahvaz and Zabol cities Iran. Atmospheric Pollution Research, 14(4), 101727.

    Article  CAS  Google Scholar 

  • Bohemen, H. V., & Janssen Van De Laak, W. H. (2003). The influence of road infrastructure and traffic on soil, water, and air quality. Environmental Management, 31, 0050–0068.

    Article  Google Scholar 

  • Böhlandt, A., Schierl, R., Diemer, J., Koch, C., Bolte, G., Kiranoglu, M., & Nowak, D. (2012). High concentrations of cadmium, cerium and lanthanum in indoor air due to environmental tobacco smoke. Science of the Total Environment, 414, 738–741.

    Article  ADS  PubMed  Google Scholar 

  • Cao, S., Chen, X., Zhang, L., Xing, X., Wen, D., Wang, B., & Duan, X. (2020). Quantificational exposure, sources, and health risks posed by heavy metals in indoor and outdoor household dust in a typical smelting area in China. Indoor Air, 30(5), 872–884. https://doi.org/10.1111/ina.12683

    Article  CAS  PubMed  Google Scholar 

  • Cao, S., Wen, D., Chen, X., Duan, X., Zhang, L., Wang, B., & Wei, F. (2022). Source identification of pollution and health risks to metals in household indoor and outdoor dust: A cross-sectional study in a typical mining town. China. Environmental Pollution, 293, 118551. https://doi.org/10.1016/j.envpol.2021.118551

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay, G., Lin, K. C. P., & Feitz, A. J. (2003). Household dust metal levels in the Sydney metropolitan area. Environmental Research, 93(3), 301–307.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chen, M., Pi, L., Luo, Y., Geng, M., Hu, W., Li, Z., & Ding, S. (2016). Grain size distribution and health risk assessment of metals in outdoor dust in Chengdu, Southwestern China. Archives of Environmental Contamination and Toxicology, 70, 534–543.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, X., Huang, Y., Zhang, S. P., Ni, S. J., & Long, Z. J. (2018). Characteristics, sources, and health risk assessment of trace elements in PM10 at an urban site in Chengdu, Southwest China. Aerosol and Air Quality Research, 18(2), 357–370.

    Article  CAS  Google Scholar 

  • Cicchella, D., De Vivo, B., Lima, A., Albanese, S., McGill, R. A. R., & Parrish, R. R. (2008). Heavy metal pollution and Pb isotopes in urban soils of Napoli, Italy. Geochemistry: Exploration, Environment, Analysis, 8(1), 103–112.

    CAS  Google Scholar 

  • Cicchella, D., Zuzolo, D., Albanese, S., Fedele, L., Di Tota, I., Guagliardi, I., & Lima, A. (2020). Urban soil contamination in Salerno (Italy): Concentrations and patterns of major, minor, trace and ultra-trace elements in soils. Journal of Geochemical Exploration, 213, 106519. https://doi.org/10.1016/j.gexplo.2020.106519

    Article  CAS  Google Scholar 

  • Cowan, N., Blair, D., Malcolm, H., & Graham, M. (2021). A survey of heavy metal contents of rural and urban roadside dusts: Comparisons at low, medium and high traffic sites in Central Scotland. Environmental Science and Pollution Research, 28, 7365–7378.

    Article  CAS  PubMed  Google Scholar 

  • Dahiru, T. (2008). P-value, a true test of statistical significance? A cautionary note. Annals of Ibadan Postgraduate Medicine, 6(1), 21–26.

    PubMed  PubMed Central  Google Scholar 

  • Dehghani, S, 2017. Environmental Geochemistry, Speciation and Health Risk Assessment of Selected Potentially Toxic Metals in Street Dust of Heavy Traffic Restricted Areas of Tehran Metropolis. PhD. Dissertation, Shiraz University, Iran. 300p.

  • Dehghani, S., Moore, F., Keshavarzi, B., & Beverley, A. H. (2017). Health risk implications of potentially toxic metals in street dust and surface soil of Tehran Iran. Ecotoxicology and Environmental Safety, 136, 92–103. https://doi.org/10.1016/j.ecoenv.2016.10.037

    Article  CAS  PubMed  Google Scholar 

  • Dehghani, S., Moore, F., Vasiluk, L., & Hale, B. A. (2018). The geochemical fingerprinting of geogenic particles in road deposited dust from Tehran metropolis, Iran: Implications for provenance tracking. Journal of Geochemical Exploration, 190, 411–423. https://doi.org/10.1016/j.gexplo.2018.04.011

    Article  CAS  Google Scholar 

  • Doyi, I. N., Isley, C. F., Soltani, N. S., & Taylor, M. P. (2019). Human exposure and risk associated with trace element concentrations in indoor dust from Australian homes. Environment International, 133, 105125. https://doi.org/10.1016/j.envint.2019.105125

    Article  CAS  PubMed  Google Scholar 

  • Du, Y., Gao, B., Zhou, H., Ju, X., Hao, H., & Yin, S. (2013). Health risk assessment of heavy metals in road dusts in urban parks of Beijing, China. Procedia Environmental Sciences, 18, 299–309.

    Article  CAS  Google Scholar 

  • El-Desoky, G. E., Aboul-Soud, M. A., Al-Othman, Z. A., Habila, M., & Giesy, J. P. (2014). Seasonal concentrations of lead in outdoor and indoor dust and blood of children in Riyadh, Saudi Arabia. Environmental Geochemistry and Health, 36, 583–593.

    Article  CAS  PubMed  Google Scholar 

  • Esplugas, R., Rovira, J., Mari, M., Fernández-Arribas, J., Eljarrat, E., Domingo, J. L., & Schuhmacher, M. (2022). Emerging and legacy flame retardants in indoor air and dust samples of Tarragona Province (Catalonia, Spain). Science of the Total Environment, 806, 150494. https://doi.org/10.1016/j.scitotenv.2021.150494

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ezani, E., Brimblecombe, P., Asha’ari, Z. H., Fazil, A. A., Ismail, S. N. S., Ramly, Z. T. A., & Khan, M. F. (2021). Indoor and outdoor exposure to PM2. 5 during COVID-19 lockdown in suburban Malaysia. Aerosol and Air Quality Research, 21(3), 200476.

    Article  CAS  Google Scholar 

  • Farahani, V. J., & Arhami, M. (2020). Contribution of Iraqi and syrian dust storms on particulate matter concentration during a dust storm episode in receptor cities: Case study of Tehran. Atmospheric Environment, 222, 117163.

    Article  CAS  Google Scholar 

  • Gad, A., Saleh, A., Farhat, H. I., Dawood, Y. H., & Abd El Bakey, S. M. (2022). Spatial Distribution, Contamination Levels, and Health Risk Assessment of Potentially Toxic Elements in Household Dust in Cairo City Egypt. Toxics, 10(8), 466. https://doi.org/10.3390/toxics10080466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunawardana, C., Goonetilleke, A., Egodawatta, P., Dawes, L., & Kokot, S. (2012). Source characterisation of road dust based on chemical and mineralogical composition. Chemosphere, 87(2), 163–170.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Gustafsson, Å., Krais, A. M., Gorzsás, A., Lundh, T., & Gerde, P. (2018). Isolation and characterization of a respirable particle fraction from residential house-dust. Environmental Research, 161, 284–290. https://doi.org/10.1016/j.envres.2017.10.049

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control A Sedimentological Approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  • Hassan, S. K. M. (2012). Metal concentrations and distribution in the household, stairs and entryway dust of some Egyptian homes. Atmospheric Environment, 54, 207–215.

    Article  ADS  CAS  Google Scholar 

  • He, C. T., Zheng, X. B., Yan, X., Zheng, J., Wang, M. H., Tan, X., & Mai, B. X. (2017). Organic contaminants and heavy metals in indoor dust from e-waste recycling, rural, and urban areas in South China: spatial characteristics and implications for human exposure. Ecotoxicology and Environmental Safety, 140, 109–115.

    Article  CAS  PubMed  Google Scholar 

  • Hodas, N., Loh, M., Shin, H. M., Li, D., Bennett, D., McKone, T. E., & Fantke, P. (2016). Indoor inhalation intake fractions of fine particulate matter: review of influencing factors. Indoor Air, 26(6), 836–856. https://doi.org/10.1111/ina.12268

    Article  CAS  PubMed  Google Scholar 

  • Honggui, D., Teng-feng, G., Ming-Hui, L., & Xu, D. (2012). Comprehensive assessment model on heavy metal pollution in soil. International Journal of Electrochemical Science, 7(6), 5286–5296.

    Article  Google Scholar 

  • Iwegbue, C. M., Nwose, N., Egobueze, F. E., Odali, E. W., Tesi, G. O., Nwajei, G. E., & Martincigh, B. S. (2020). Risk assessment of human exposure to potentially toxic metals in indoor dust from some small and medium scale enterprise workplace environments in southern Nigeria. Indoor and Built Environment, 29(8), 1137–1154.

    Article  CAS  Google Scholar 

  • Jafari, A. J., Kermani, M., Kalantary, R. R., & Arfaeinia, H. (2018). The effect of traffic on levels, distribution and chemical partitioning of harmful metals in the street dust and surface soil from urban areas of Tehran. Iran. Environmental Earth Sciences, 77(2), 38.

    Article  ADS  Google Scholar 

  • Johnson, C. C., Demetriades, A., Locutura, J., & Ottesen, R. T. (2011). Mapping the chemical environment of urban areas. Hoboken: Wiley.

    Book  Google Scholar 

  • Jose, J., & Srimuruganandam, B. (2020). Investigation of road dust characteristics and its associated health risks from an urban environment. Environmental Geochemistry and Health, 42, 2819–2840.

    Article  CAS  PubMed  Google Scholar 

  • Kelepertzis, E., Argyraki, A., Botsou, F., Aidona, E., Szabó, Á., & Szabó, C. (2019). Tracking the occurrence of anthropogenic magnetic particles and potentially toxic elements (PTEs) in house dust using magnetic and geochemical analyses. Environmental Pollution, 245, 909–920.

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa, Y. K. L., Pedruzzi, R., Galvão, E. S., de Araújo, I. B., de Almeida Alburquerque, T. T., Kumar, P., & Moreira, D. M. (2021). Source apportionment modelling of PM2. 5 using CMAQ-ISAM over a tropical coastal-urban area. Atmospheric Pollution Research, 12(12), 101250.

    Article  CAS  Google Scholar 

  • Koehler, K., Good, N., Wilson, A., Mölter, A., Moore, B. F., Carpenter, T., & Volckens, J. (2019). The Fort Collins commuter study: Variability in personal exposure to air pollutants by microenvironment. Indoor Air, 29(2), 231–241. https://doi.org/10.1111/ina.12533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40(6), 2395–2420. https://doi.org/10.1007/s10653-018-0106-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurt-Karakus, P. B. (2012). Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environment International, 50, 47–55.

    Article  CAS  PubMed  Google Scholar 

  • Latif, M. T., Othman, M. R., Kim, C. L., Murayadi, S. A., & Sahaimi, K. N. A. (2009). Composition of household dust in semi-urban areas in Malaysia. Indoor and Built Environment, 18(2), 155–161.

    Article  CAS  Google Scholar 

  • Latif, M. T., Yong, S. M., Saad, A., Mohamad, N., Baharudin, N. H., Mokhtar, M. B., & Tahir, N. M. (2014). Composition of heavy metals in indoor dust and their possible exposure: A case study of preschool children in Malaysia. Air Quality, Atmosphere & Health, 7, 181–193.

    Article  CAS  Google Scholar 

  • Lee, S., Han, C., Ahn, J., Han, Y., Lee, A. H., Ro, S., & Hong, S. (2022). Characterization of trace elements and Pb isotopes in PM2. 5 and isotopic source identification during haze episodes in Seoul. Korea. Atmospheric Pollution Research, 13(6), 101442.

    Article  CAS  Google Scholar 

  • Lei, W., Zhang, L., Xu, J., Liu, Z., Xin, J., Li, X., & Zhao, W. (2021). Spatiotemporal variations and source apportionment of metals in atmospheric particulate matter in Beijing and its surrounding areas. Atmospheric Pollution Research, 12(11), 101213.

    Article  CAS  Google Scholar 

  • Liang, L., Han, Z., Li, J., & Liang, M. (2022). Investigation of the influence of mineral dust on airborne particulate matter during the COVID-19 epidemic in spring 2020 over China. Atmospheric Pollution Research, 13(6), 101424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, Y., Wu, M., Fang, F., Wu, J., & Ma, K. (2021). Characteristics and influencing factors of heavy metal pollution in surface dust from driving schools of Wuhu. China. Atmospheric Pollution Research, 12(2), 305–315.

    Article  ADS  CAS  Google Scholar 

  • Lisiewicz, M., Heimburger, R., & Golimowski, J. (2000). Granulometry and the content of toxic and potentially toxic elements in vacuum-cleaner collected, indoor dusts of the city of Warsaw. Science of the Total Environment, 263(1–3), 69–78.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ludden, J., Peach, D., & Flight, D. (2015). Geochemically based solutions for urban society: London, a case study. Elements, 11(4), 253–258.

    Article  ADS  Google Scholar 

  • Maertens, R. M., Bailey, J., & White, P. A. (2004). The mutagenic hazards of settled house dust: A review. Mutation Research/reviews in Mutation Research, 567(2–3), 401–425.

    Article  CAS  Google Scholar 

  • Mari, M., Rovira, J., Sánchez-Soberón, F., Nadal, M., Schuhmacher, M., & Domingo, J. L. (2018). Partial replacement of fossil fuels in a cement plant: Assessment of human health risks by metals, metalloids and PCDD/Fs. Environmental Research, 167, 191–197. https://doi.org/10.1016/j.envres.2018.07.014

    Article  ADS  CAS  PubMed  Google Scholar 

  • Melymuk, L., Demirtepe, H., & Jílková, S. R. (2020). Indoor dust and associated chemical exposures. Current Opinion in Environmental Science and Health, 15, 1–6. https://doi.org/10.1016/j.coesh.2020.01.005

    Article  Google Scholar 

  • Menhaje-Bena, R., Koohi, M. K., Modabberi, S., Khansari, M. G., & Bakand, S. (2021). Investigation of geological and environmental factors of airborne suspended particles from sand and gravel quarries in the West of Tehran. Iran. Journal of Health and Safety at Work, 11(1), 117–135.

    Google Scholar 

  • Mihankhah, T., Saeedi, M., & Karbassi, A. (2020). A comparative study of elemental pollution and health risk assessment in urban dust of different land-uses in Tehran’s urban area. Chemosphere, 241, 124984.

    Article  CAS  PubMed  Google Scholar 

  • Odediran, E. T., Adeniran, J. A., Yusuf, R. O., Abdulraheem, K. A., Adesina, O. A., Sonibare, J. A., & Du, M., 2021. Contamination Levels, Health Risks and Source Apportionment of Potentially Toxic Elements in Road Dusts of a Densely Populated African City. Environmental Nanotechnology, Monitoring and Management. 10. 1016/j.enmm.2021.100445.

  • Olujimi, O., Steiner, O., & Goessler, W. (2015). Pollution indexing and health risk assessments of trace elements in indoor dusts from classrooms, living rooms and offices in Ogun State, Nigeria. Journal of African Earth Sciences, 101, 396–404.

    Article  ADS  CAS  Google Scholar 

  • Pan, H., Lu, X., & Lei, K. (2017). A comprehensive analysis of heavy metals in urban road dust of Xi’an, China: Contamination, source apportionment and spatial distribution. Science of the Total Environment, 609, 1361–1369.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Patino, E. D. L., & Siegel, J. A. (2018). Indoor environmental quality in social housing: A literature review. Building and Environment, 131, 231–241.

    Article  Google Scholar 

  • Qiao, X., Schmidt, A. H., Tang, Y., Xu, Y., & Zhang, C. (2014). Demonstrating urban pollution using toxic metals of road dust and roadside soil in Chengdu, southwestern China. Stochastic Environmental Research and Risk Assessment, 28, 911–919.

    Article  Google Scholar 

  • Rasmussen, P. E. (2004). Can metal concentrations in indoor dust be predicted from soil geochemistry? Canadian Journal of Analytical Sciences and Spectroscopy, 49(3), 166–174.

    CAS  Google Scholar 

  • Rasmussen, P. E., Levesque, C., Chénier, M., & Gardner, H. D. (2018). Contribution of metals in resuspended dust to indoor and personal inhalation exposures: Relationships between PM10 and settled dust. Building and Environment, 143, 513–522.

    Article  Google Scholar 

  • Rasmussen, P. E., Subramanian, K. S., & Jessiman, B. J. (2001). A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa. Canada. Science of the Total Environment, 267(1–3), 125–140.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Rehman, A., Liu, G., Yousaf, B., Zia-ur-Rehman, M., Ali, M. U., Rashid, M. S., & Javed, Z. (2020). Characterizing pollution indices and children health risk assessment of potentially toxic metal(oid)s in school dust of Lahore Pakistan. Ecotoxicology and Environmental Safety, 190, 110059. https://doi.org/10.1016/j.ecoenv.2019.110059

    Article  CAS  PubMed  Google Scholar 

  • Rezayani, N., Mirmohammadi, M., & Mehrdadi, N. 2021. Origin and risk assessment, and evaluation of heavy metal pollution in the soil of Tehran, Iran. Iranian Journal of Chemistry and Chemical Engineering.

  • Del Rio-Salas, R., Ruiz, J., De la O-Villanueva, M., Valencia-Moreno, M., Moreno-Rodríguez, V., Gómez-Alvarez, A.,& Meza-Figueroa, D. 2012. Tracing geogenic and anthropogenic sources in urban dusts: Insights from lead isotopes. Atmospheric Environment, 60, 202-210

  • Roberts, J. W., Glass, G., & Mickelson, L. (2004). A pilot study of the measurement and control of deep dust, surface dust, and lead in 10 old carpets using the 3-spot test while vacuuming. Archives of Environmental Contamination and Toxicology, 48, 16–23.

    Article  Google Scholar 

  • Rovira, J., Nadal, M., Schuhmacher, M., & Domingo, J. L. (2018). Concentrations of trace elements and PCDD/Fs around a municipal solid waste incinerator in Girona (Catalonia, Spain). Human health risks for the population living in the neighborhood. Science of the Total Environment, 630, 34–45. https://doi.org/10.1016/j.scitotenv.2018.02.175

    Article  ADS  CAS  PubMed  Google Scholar 

  • Salmanzadeh, M., Saeedi, M., Li, L. Y., & Nabi-Bidhendi, G. (2015). Characterization and metals fractionation of street dust samples from Tehran Iran. International Journal of Environmental Research, 9(1), 213–224.

    CAS  Google Scholar 

  • Sánchez-Soberón, F., Mari, M., Kumar, V., Rovira, J., Nadal, M., & Schuhmacher, M. (2015). An approach to assess the particulate matter exposure for the population living around a cement plant: Modelling indoor air and particle deposition in the respiratory tract. Environmental Research, 143, 10–18. https://doi.org/10.1016/j.envres.2015.09.008

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sánchez-Soberón, F., Rovira, J., Sierra, J., Mari, M., Domingo, J. L., & Schuhmacher, M. (2019). Seasonal characterization and dosimetry-assisted risk assessment of indoor particulate matter (PM10-2.5, PM2.5-0.25, and PM0.25) collected in different schools. Environmental Research, 175, 287–296. https://doi.org/10.1016/j.envres.2019.05.035

    Article  ADS  CAS  PubMed  Google Scholar 

  • Shi, L., Zhang, J., Yao, F., Zhang, D., & Guo, H. (2020). Temporal variation of dust emissions in dust sources over Central Asia in recent decades and the climate linkages. Atmospheric Environment, 222, 117176.

    Article  CAS  Google Scholar 

  • Soleimanian, E., Taghvaee, S., Mousavi, A., Sowlat, M. H., Hassanvand, M. S., Yunesian, M., & Sioutas, C. (2019). Sources and temporal variations of coarse particulate matter (PM) in Central Tehran Iran. Atmosphere, 10(5), 291.

    Article  ADS  CAS  Google Scholar 

  • Tahmasbian, I., Nasrazadani, A., Shoja, H., & Safari Sinegani, A. A. (2014). The effects of human activities and different land-use on trace element pollution in urban topsoil of Isfahan (Iran). Environmental Earth Sciences, 71, 1551–1560.

    Article  ADS  CAS  Google Scholar 

  • Tan, S. Y., Praveena, S. M., Abidin, E. Z., & Cheema, M. S. (2016). A review of heavy metals in indoor dust and its human health-risk implications. Reviews on Environmental Health, 31(4), 447–456.

    Article  CAS  PubMed  Google Scholar 

  • Tashakor, M., Behrooz, R. D., Asvad, S. R., & Kaskaoutis, D. G. (2022a). Tracing of heavy metals embedded in indoor dust particles from the industrial city of Asaluyeh, South of Iran. International Journal of Environmental Research and Public Health, 19(13), 7905. https://doi.org/10.3390/ijerph19137905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tashakor, M., & Modabberi, S. (2021). Human Health Risks Associated with Potentially Harmful Elements from Urban Soils of Hamedan City Iran. Pollution, 7(3), 709–722. https://doi.org/10.22059/poll.2021.318496.1015

    Article  CAS  Google Scholar 

  • Tashakor, M., Modabberi, S., & Argyraki, A. (2022b). Assessing the contamination level, sources and risk of potentially toxic elements in urban soil and dust of Iranian cities using secondary data of published literature. Environmental Geochemistry and Health, 44(3), 645–675.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (2001). Chemical composition and element distribution in the Earth’s crust. Encyclopedia of Physical Science and Technology, 312, 697–719.

    Google Scholar 

  • Timofeev, I., Kosheleva, N., & Kasimov, N. (2019). Health risk assessment based on the contents of potentially toxic elements in urban soils of Darkhan, Mongolia. Journal of Environmental Management, 242, 279–289.

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeres Untersuchungen, 33(1), 566–575. https://doi.org/10.1007/BF02414780

    Article  Google Scholar 

  • Tong, S. T., & Lam, K. C. (2000). Home sweet home? A case study of household dust contamination in Hong Kong. Science of the Total Environment, 256(2–3), 115–123.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Turner, A., & Simmonds, L. (2006). Elemental concentrations and metal bioaccessibility in UK household dust. Science of the Total Environment, 371(1–3), 74–81.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Van Beers, D., & Graedel, T. E. (2007). Spatial characterisation of multi-level in-use copper and zinc stocks in Australia. Journal of Cleaner Production, 15(8–9), 849–861.

    Article  Google Scholar 

  • Wang, J., Li, S., Cui, X., Li, H., Qian, X., Wang, C., & Sun, Y. (2016). Bioaccessibility, sources and health risk assessment of trace metals in urban park dust in Nanjing, Southeast China. Ecotoxicology and Environmental Safety, 128, 161–170.

    Article  CAS  PubMed  Google Scholar 

  • Wong, C. S., Li, X., & Thornton, I. (2006). Urban environmental geochemistry of trace metals. Environmental Pollution, 142(1), 1–16. https://doi.org/10.1016/j.envpol.2005.09.004

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yang, Y., Liu, L., Xiong, Y., Zhang, G., Wen, H., Lei, J., & Lyu, Y. (2016). A comparative study on physicochemical characteristics of household dust from a metropolitan city and a remote village in China. Atmospheric Pollution Research, 7(6), 1090–1100.

    Article  Google Scholar 

  • Yoshinaga, J., Yamasaki, K., Yonemura, A., Ishibashi, Y., Kaido, T., Mizuno, K., & Tanaka, A. (2014). Lead and other elements in house dust of Japanese residences–Source of lead and health risks due to metal exposure. Environmental Pollution, 189, 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, L., Liu, G., Shen, M., Hu, R., Sun, M., & Liu, Y. (2019). Characteristics and health risk assessment of heavy metals in indoor dust from different functional areas in Hefei, China. Environmental Pollution, 251, 839–849.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, L., Liu, G., Shen, M., & Liu, Y. (2022). Potential ecological and health risks of heavy metals for indoor and corresponding outdoor dust in Hefei Central China. Chemosphere, 302, 134864. https://doi.org/10.1016/j.chemosphere.2022.134864

    Article  CAS  PubMed  Google Scholar 

  • Zhou, L., Liu, G., Shen, M., Liu, Y., & Lam, P. K. (2021). Characteristics of indoor dust in an industrial city: Comparison with outdoor dust and atmospheric particulates. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.129952

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their deepest gratitude to Professor Michael Watts, the Editor in Chief, and Professor Jack Ng, the Handling Editor for their precious time and efforts throughout the review process. The anonymous reviewers are highly appreciated for their helpful comments. We also appreciate Dr. Mahsa Tashakor, the researcher at the Department of Earth and Atmospheric Sciences, Central Michigan University, for helping us with data processing and copy-editing of the revised manuscript.

Author information

Authors and Affiliations

Authors

Contributions

NK was involve in conceptualization, data curation, formal analysis, investigation, methodology, software, validation, and writing—original draft. SM contributed to conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, resources, software, supervision, validation, visualization, writing—original draft, and writing—review and editing. BKZ was involved in conceptualization, methodology, project administration, supervision, and writing—review and editing. FR contributed to investigation, project administration, and supervision. NGC was involved in data curation, formal analysis, and writing—review and editing. JS contributed to data curation, formal analysis, and writing—review and editing. JR was involved in conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, resources, and writing—review and editing.

Corresponding author

Correspondence to Soroush Modabberi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajooee, N., Modabberi, S., Khoshmanesh Zadeh, B. et al. Contamination level, spatial distribution, and sources of potentially toxic elements in indoor settled household dusts in Tehran, Iran. Environ Geochem Health 46, 56 (2024). https://doi.org/10.1007/s10653-023-01838-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-023-01838-8

Keywords

Navigation