Skip to main content

Advertisement

Log in

Identification and apportionment of groundwater nitrate sources in Chakari Plain (Afghanistan)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The Chakari alluvial aquifer is the primary source of water for human, animal, and irrigation applications. In this study, the geochemistry of major ions and stable isotope ratios (δ2H–H2O, δ18O–H2O, δ15N–NO3̄, and δ18O–NO3̄) of groundwater and river water samples from the Chakari Plain were analyzed to better understand characteristics of nitrate. Herein, we employed nitrate isotopic ratios and BSIMM modeling to quantify the proportional contributions of major sources of nitrate pollution in the Chakari Plain. The cross-plot diagram of δ15N-NO3̄ against δ18O–NO3̄ suggests that manure and sewage are the main source of nitrate in the plain. Nitrification is the primary biogeochemical process, whereas denitrification did not have a significant influence on biogeochemical nitrogen dynamics in the plain. The results of this study revealed that the natural attenuation of nitrate in groundwater of Chakari aquifer is negligible. The BSIMM results indicate that nitrate originated mainly from sewage and manure (S&M, 75‰), followed by soil nitrogen (SN, 13‰), and chemical fertilizers (CF, 9.5‰). Large uncertainties were shown in the UI90 values for S&M (0.6) and SN (0.47), whereas moderate uncertainty was exhibited in the UI90 value for CF (0.29). The findings provide useful insights for decision makers to verify groundwater pollution and develop a sustainable groundwater management strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson, K. K., & Hooper, A. B. (1983). O2 and H2O are each the source of one O in NO2 produced from NH3 by Nitrosomonas: 15N evidence. FEBS Letter, 164, 236–240.

    Article  Google Scholar 

  • Banks, D., & Soldal, O. (2002). Towards a policy for sustainable use of groundwater by non-governmental organizations in Afghanistan. Hydrogeology Journal, 10, 377–392. https://doi.org/10.1007/s10040-002-0203-y

    Article  Google Scholar 

  • Blarasin, M., Cabrera, A., Matiatos, I., Quinodoz, F. B., Albo, J. G., Lutri, V., Matteoda, E., & Panarello, H. (2020). Comparative evaluation of urban versus agricultural nitrate sources and sinks in an unconfined aquifer by isotopic and multivariate analyses. Science of the Total Environment, 741, 140374.

    Article  CAS  Google Scholar 

  • Bohannon, R. G. (2010). Geologic and topographic maps of the Kabul North 30′×60′ quadrangle, Afghanistan. 34 p. pamphlet, 2 map sheets, scale 1: 100,000U.S. Geological Survey Scientific Investigation Map 3120 http://pubs.usgs.gov/sim/3120

  • Cao, M., Hu, A., Gad, M., Adyari, B., Qin, D., Zhang, L., Sun, Q., & Yu, C.-P. (2022). Domestic wastewater causes nitrate pollution in an agricultural watershed. China. Science of the Total Environment, 823, 153680. https://doi.org/10.1016/j.scitotenv.2022.153680

    Article  CAS  Google Scholar 

  • Cao, S., Fei, Y., Tian, X., Cui, X., Zhang, X., Yuan, R., & Li, Y. (2021). Determining the origin and fate of nitrate in the Nanyang Basin, Central China, using environmental isotopes and the Bayesian mixing model. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-14083-2

    Article  Google Scholar 

  • Chang, C. C. Y., Kendall, C., Silva, S. R., Battaglin, W. A., & Campbell, D. H. (2002). Nitrate stable isotope: Tools for determining nitrate sources among different land uses in the Mississipi River Basin. Canadian Journal of Fisheries and Aquatic Sciences, 59, 1874–1885.

    Article  CAS  Google Scholar 

  • Davidson, E. A., David, M. B., Galloway, J. N., Goodale, C. L., Haeuber, R., Harrison, J. A., Howarth, R. W., Jaynes, D. B., Lowrance, R. R., Nolan, B. T., Peel, J. L., Pinder, R. W., Porter, E., Snyder, C. S., Townsend, A. R., & Ward, M. H. (2011). Excess nitrogen in the U.S. environment: Trends, risks, and solutions. Issues in Ecology, 15, 1–16.

    Google Scholar 

  • Deutsch, B., Mewes, M., Liskow, I., & Voss, M. (2006). Quantification of diffuse nitrate inputs into a small river system using stable isotopes of oxygen and nitrogen in nitrate. Organic Chemistry, 37, 1333–1342. https://doi.org/10.1016/j.orggeochem.2006.04.012

    Article  CAS  Google Scholar 

  • Fan, A. M., & Steinberg, V. E. (1996). Health implications of nitrate and nitrate in drinking water: An update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regulatory Toxicology and Pharmacology, 23, 35–43.

    Article  CAS  Google Scholar 

  • Fewtrell, L. (2004). Drinking-water nitrate, methemoglobinemia, and global burden of disease: A discussion. Environmental Health Perspectives, 112, 1371–1374.

    Article  Google Scholar 

  • Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., et al. (2004). Nitrogen cycles: Past, present, and future. Biogeochemistry, 70, 153–226.

    Article  CAS  Google Scholar 

  • Guo, J., Zuo, P., Yang, L., Wang, L., & Yang, H. (2022). Determining nitrate sources in storm runoff in complex urban environments based on nitrogen and oxygen isotopes. Science of the Total Environment, 838, 155680. https://doi.org/10.1016/j.scitotenv.2022.155680

    Article  CAS  Google Scholar 

  • Hayat, E., & Baba, A. (2017). Quality of groundwater resources in Afghanistan. Environmental Monitoring and Assessment, 189, 318. https://doi.org/10.1007/s10661-017-6032-1

    Article  CAS  Google Scholar 

  • He, S., Li, P., Su, F., Wang, D., & Ren, X. (2022). Identification and apportionment of shallow groundwater nitrate pollution in Weining Plain, northwest China, using hydrochemical indices, nitrate stable isotopes, and the new Bayesian stable isotope mixing model (MixSIAR). Environmental Pollution, 298, 118852. https://doi.org/10.1016/j.envpol.2022.118852

    Article  CAS  Google Scholar 

  • Herath, I. K., Wu, S., Ma, M., & Ping, H. (2022). Reservoir NO3̄ pollution and chemical weathering: By dual isotopes of δ15N-NO3̄, δ18O-NO3̄ and geochemical constraints. Geochemistry and Health Environment. https://doi.org/10.1007/s10653-021-01195-4

    Article  Google Scholar 

  • Herms, I., Jodár, J., Soler, A., Lambán, L. J., Custodio, E., Nûñez, J. A., Arnó, G., Parcerisa, D., & Jorge-Sánchez, J. (2021). Identification of natural and anthropogenic geochemical processes determining the groundwater quality in Port del Comte High Mountain karst aquifer (SE, Pyrenees). Water, 13, 2891. https://doi.org/10.3390/w13202891

    Article  CAS  Google Scholar 

  • Houben, G., Tunnermeier, T., & Himmelsbach, T. (2005). Hydrogeology of the Kabul Basin-Part II: Groundwater geochemistry and microbiology. Foreign Office of the Federal Republic of Germany.

    Google Scholar 

  • Huang, X., Jin, M., Ma, B., Liang, X., Cao, M., Zhang, J., Zhang, Z., & Su, J. (2022). Identifying nitrate sources and transformation in groundwater in a large subtropical basin under a framework of groundwater flow systems. Journal of Hydrology, 610, 127943. https://doi.org/10.1016/j.jhydrol.2022.127943

    Article  CAS  Google Scholar 

  • Ji, X., Shu, L., Chen, W., Chen, Z., Shang, X., Yang, Y., Dahlgren, R. A., & Zhang, M. (2022). Nitrate pollution source apportionment, uncertainty and sensitivity analysis across a rural-urban river network based on δ15N/δ18O-NO3̄ isotopes and SIAR modeling. Journal of Hazardous Materials, 438, 129480. https://doi.org/10.1016/j.jhazmat.2022.129480

    Article  CAS  Google Scholar 

  • Ji, X., Xie, R., Hao, Y., & Lu, J. (2017). Quantitative identification of nitrate pollution sources and uncertainty analysis based on dual isotope approach in an agricultural watershed. Environmental Pollution, 229, 586–594. https://doi.org/10.1016/j.envpol.2017.06.100

    Article  CAS  Google Scholar 

  • Kaown, D., Kho, D.-C., Mayer, B., Mahlknecht, J., Ju, Y., Rhee, S.-K., Kim, J.-H., Park, D. K., Park, I., Lee, H.-L., Yoon, Y.-Y., & Lee, K.-K. (2023). Estimation of nutrient sources and fate in groundwater near a large weir-regulated river using multiple isotopes and microbial signatures. Journal Hazardous Materials, 446, 130703. https://doi.org/10.1016/j.jhazmat.2022.130703

    Article  CAS  Google Scholar 

  • Kendall, C. (1998). Tracing nitrogen sources and cycling in catchments. In C. Kendall & J. H. McoDonnell (Eds.), Isotope tracers in catchment hydrology. Elsevier.

    Google Scholar 

  • Kendall, C., Eelliot, E. M., & Wankel, S. D. (2007). Tracing anthropogenic inputs of nitrogen to ecosystems. In R. H. Michener & K. Lajtha (Eds.), Stable isotopes in ecology and environmental science (2nd ed., pp. 375–449). Blackwell Publishing.

    Chapter  Google Scholar 

  • Kim, H., Kaown, D., Mayer, B., Lee, J.-Y., Hyun, Y., & Lee, K.-K. (2015). Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin Korea) using isotope and microbial community analyses. Science of the Total Environment, 533, 566–575. https://doi.org/10.1016/j.scitotenv.2015.06.080

    Article  CAS  Google Scholar 

  • Li, S., Jiang, H., Xu, Z., & Zhang, Q. (2022). Backgrounds as a potentially important component of riverine nitrate loads. Science of the Total Environment., 838, 155999. https://doi.org/10.1016/j.scitotenv.2022.15599

    Article  CAS  Google Scholar 

  • Mack, T.J., Chornack, M.P., Flanagan, S.M., Chalmers, A.T. (2014). Hydrogeology and water quality of the Chakari Basin, Afghanistan. U.S. Geological Survey Scientific Investigations Report 2014–5113, 35 p. https://doi.org/10.3133/sir20145113.

  • Mack, T. J., Chornack, M. P., & Taher, M. R. (2013). Water-level trends and sustainable water in the Kabul Basin, Afghanistan. Environment, Systems and Decisions. https://doi.org/10.1007/s10669-013-9455-4

    Article  Google Scholar 

  • Matiatos, I. (2016). Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece). Science of the Total Environment, 541, 802–814. https://doi.org/10.1016/j.scitotenv.2015.09.134

    Article  CAS  Google Scholar 

  • Mayer, B., Boyer, B. W., Goodale, C., Jaworski, N. A., Breemen, N. V., Howarth, R. W., et al. (2002). Source of nitrate in rivers draining sixteen watersheds in the northeastern U.S. isotopic constraint. Biogeochemistry, 57, 171–197. https://doi.org/10.1023/A:1015744002496

    Article  Google Scholar 

  • Minet, E. P., Goodhue, R., Meier-Augenstein, W., Kalin, R. M., Fenton, O., Richards, K. G., Coxon, C. E. (2017). Combining stable isotopes with contamination indicators: A method for improved investigation of nitrate sources and dynamics in aquifers with mixed nitrogen inputs. Water Research, 124, 85–96. https://doi.org/10.1016/j.watres.2017.07.041

    Article  CAS  Google Scholar 

  • Nejatijahromi, Z., Nassery, H. R., Hosono, T., Nakhaei, M., Alijani, F., & Okumura, A. (2019). Groundwater nitrate contamination in an area using urban wastewaters for agricultural irrigation under arid climate condition, southeast of Tehran, Iran. Agricultural Water Management, 221, 397–414. https://doi.org/10.1016/j.agwat.2019.04.015

    Article  Google Scholar 

  • Nikolenko, O., Jurado, A., Borges, A. V., Knöller, K., & Brouyére, S. (2018). Isotopic composition of nitrogen species in groundwater under agricultural areas: A review. Science of the Total Environment, 621, 1415–1432. https://doi.org/10.1016/j.scitotenv.2017.10.086

    Article  CAS  Google Scholar 

  • Oak Ridge National Laboratory. (2012). Landscan global population database 2011: Oak ridge national laboratory database, http://www.ornl.gov/sci/landscan/ Accessed 4 Feb 2023.

  • Ogrinc, N., Tamše, S., Zavadlav, S., Vrzel, J., & Jin, L. (2019). Evaluation of geochemical processes and nitrate pollution sources at the Ljubljansko polje aquifer (Slovenia): A stable isotope perspective. Science of the Total Environment, 646, 1588–1600. https://doi.org/10.1016/j.scitotenv.2018.07.245

    Article  CAS  Google Scholar 

  • Panno, S. V., Hackley, K. C., Hwang, H. H., Greenberg, S. E., Krapac, I. G., Landsberger, S., & O’Kelly, D. J. (2006a). Characterization and identification of Na-Cl sources in groundwater. Ground Water, 44(2), 176–187. https://doi.org/10.1111/j.1745-6584.2005.00127.x

    Article  CAS  Google Scholar 

  • Panno, S. V., Hackley, K. C., Kelly, W. R., & Hwang, H. H. (2006b). Isotopic evidence of nitrate sources and denitrification in the Mississippi River Illinois. Journal of Environmental Quality, 35(2), 495–504.

    Article  CAS  Google Scholar 

  • Parnell, A.C., Inger, R. (2016). A stable isotope mixing model. R package version 0.4.1.

  • Parnell, A. C., Inger, R., Bearhop, S., & Jackson, A. L. (2010). Source partitioning using stable isotopes: With too much variation. PloS ONE, 5(3), e9672. https://doi.org/10.1371/journal.pone.0009672

    Article  CAS  Google Scholar 

  • Parnell, A. C., Phillips, D. L., Bearhop, S., Semmens, B. X., Ward, E. J., Moore, J. W., Jackson, A. L., Grey, J., Kelly, D. J., & Inger, R. (2013). Bayesian stable isotope mixing models. Environmentrics. https://doi.org/10.1002/env.2221

    Article  Google Scholar 

  • Pastén-Zapata, E., Ledesma-Ruiz, R., Harter, T., Ramírez, A. I., & Mahlknecht, J. (2014). Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Science of the Total Environment, 470–471, 855–864. https://doi.org/10.1016/j.scitotenv.2013.10.043

    Article  CAS  Google Scholar 

  • Phillips, D., & Koch, P. L. (2002). Incorporating concentration dependence in stable isotope mixing models. Oecologica, 130, 114–125. https://doi.org/10.1007/s004420100786

    Article  Google Scholar 

  • Qin, Y., Zhang, D., & Wang, F. (2018). Using nitrogen and oxygen isotopes to access sources and transformations of nitrogen in the Basin, North China. Environment Science and Pollution Research, 26, 738–748. https://doi.org/10.1007/s11356-018-3660-0

    Article  CAS  Google Scholar 

  • Re, V., Kamoun, S., Sacchi, E., Trabelsi, R., Zouari, K., Matiatos, I., Allais, E., & Daniele, S. (2021). A critical assessment of widely used techniques for nitrate source apportionment in arid and semi-arid regions. Science of the Total Environment, 775, 145688. https://doi.org/10.1016/j.scitotenv.2021.145688

    Article  CAS  Google Scholar 

  • Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. W. N., & Bemment, C. D. (2008). Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Research, 42, 4215–4232. https://doi.org/10.1016/j.watres.2008.07.020

    Article  CAS  Google Scholar 

  • Rozanski, K., Araguas-Araguas, L., & Gofiantini, R. (1993). Isotopic patterns in moderns in global precipitation, in climate change in continental isotope records. Geophysical Monograph Series, 78, 1–36.

    Google Scholar 

  • Shang, X., Huang, H., Mei, K., Xia, F., Chen, Z., Yang, Y., Dahlgren, R. A., Zhang, M. H., & Ji, X. L. (2020). Riverine nitrate source apportionment using dual isotopes in a drinking water source watershed of southeast China. Science of the Total Environment, 724, 137975. https://doi.org/10.1016/j.scitotenv.2020.137975

    Article  CAS  Google Scholar 

  • Shu, W., Wang, P., Zhao, J., Ding, M., Zhang, H., Nie, M., & Huang, G. (2022). Sources and migration similarity determine nitrate concentrations: Integrating isotopic, landscape, and biological approaches. Science of the Total Environment, 852, 158216. https://doi.org/10.1016/j.scitotenv.2022.158216

    Article  CAS  Google Scholar 

  • Stadler, S., Osenbrück, K., Knöller, K., Suckow, A., Sültenfuß, J., Oster, H., Himmelsbach, T., & Hötzl, H. (2008). Understanding the origin and fate of nitrate in groundwater of semi-arid environments. Journal of Arid Environments, 72, 1830–1842. https://doi.org/10.1016/j.jaridenv.2008.06.003

    Article  Google Scholar 

  • Torres-Mrtínez, J. A., Mora, A., Mahlknecht, J., Kaown, D., & Barceló. (2021). Determining nitrate and sulfate pollution sources and transformations in a coastal aquifer impacted by seawater intrusion—A multi-isotopic approach combined with self-organized maps and a Bayesian mixing model. Journal of Hazardous Materials, 417, 126103. https://doi.org/10.1016/j.jhazmat.2021.126103

    Article  CAS  Google Scholar 

  • Utom, A. U., Werban, U., Levan, C., Muller, C., Knoller, K., Vogt, C., & Dietrich, P. (2020). Groundwater nitrification and denitrification are not always strictly aerobic and anaerobic processes, respectively: An assessment of dual-nitrate isotopic and chemical evidence in a stratified alluvial aquifer. Biogeochemistry, 147, 211–223. https://doi.org/10.1007/s10533-020-00637-y

    Article  CAS  Google Scholar 

  • Voss, M., Deutsh, B., Elmgren, R., Humborg, C., Kuuppo, P., Pastuszak, M., Roff, C., & Schulte, U. (2006). Source identification of nitrate by means of isotopic tracers in the Baltic Sea catchments. Biogeosciences, 3, 663–676.

    Article  CAS  Google Scholar 

  • Wang, H., Yan, Z., Ju, X., Song, X., Zhang, J., Li, S., & Zhu-Barker, X. (2022). Quantifying nitrous oxide production rates from nitrification and denitrification under various moisture conditions in agricultural soils: Laboratory study and literature synthesis. Frontier in Microbiology, 13, 1110151. https://doi.org/10.3389/fmicb.2022.1110151

    Article  Google Scholar 

  • Ward, M. H., DeKok, T. M., Levallois, P., Brender, J., Gulis, G., Nolan, B. T., & VanDerslice, J. (2005). Workgroup report: Drinking-water nitrate and health—Recent findings and research needs. Environmental Health Perspectives, 113(11), 1607–1614.

    Article  CAS  Google Scholar 

  • World Health Organization, (2017). Guidelines for Drinking-water Quality. 4th edition. Incorporating the 1st addendum.

  • Xu, S. G., Kang, P. P., & Sun, Y. (2016). A stable isotope approach and its application for identifying nitrate source and transformation process in water. Environmental Science and Pollution Research, 23, 1133–1148.

    Article  Google Scholar 

  • Xue, D., Bottle, J., Baets, B., Accoe, F., Nestler, A., Taylor, P., Cleemput, O., Berglund, M., & Boeckx, P. (2009). Present limitations and future prospects of stable isotopes methods for nitrate source identification in surface and groundwater. Water Research, 43, 1159–1170.

    Article  CAS  Google Scholar 

  • Yang, P., Wang, Y., Wu, X., Chang, L., Ham, B., Song, L., & Groves, C. (2020). Nitrate source and biogeochemical processes in karst underground rivers impacted by different anthropogenic input characteristics. Environmental Pollution, 265, 114835. https://doi.org/10.1016/j.envpol.2020.114835

    Article  CAS  Google Scholar 

  • Yi, Q., Chen, Q., Hu, L., & Shi, W. (2017). Tracking nitrogen sources, transformation and transport at a basin scale with complex plain river networks. Environmental Science and Technology, 51(10), 5396–5403.

    Article  CAS  Google Scholar 

  • Yue, F. J., Liu, C. Q., Li, S. L., Zhao, Z. Q., Liu, X. L., Ding, H., Liu, B. J., & Zhong, J. (2014). Analysis of δ15N and δ18O to identify nitrate sources and transformations in Songhua River, Northeast China. Journal of Hydrology, 519, 329–339. https://doi.org/10.1016/j.jhydrol.2014.07.026

    Article  CAS  Google Scholar 

  • Zaryab, A., Nassery, H. R., & Alijani, F. (2021). Identifying sources of groundwater salinity and major hydrogeochemical processes in the Lower Kabul Basin aquifer, Afghanistan. Environmental Science: Processes and Impacts, 23, 1589.

    CAS  Google Scholar 

  • Zaryab, A., Nassery, H. R., & Alijani, F. (2022a). The effects of urbanization on the groundwater system of the Kabul shallow aquifers, Afghanistan. Hydrogeology Journal. https://doi.org/10.1007/s10040-021-02445-6

    Article  Google Scholar 

  • Zaryab, A., Nassery, H. R., Knoeller, K., Alijani, F., & Minet, E. (2022b). Determining nitrate pollution sources in the Kabul Plain aquifesr (Afghanistan) using stable isotopes and Bayesian stable isotope mixing model. Science of the Total Environment, 823, 153749. https://doi.org/10.1016/j.scitotenv.2022.153749

    Article  CAS  Google Scholar 

  • Zaryab, A., Noori, A. R., Wegerich, K., & Kløve, B. (2017). Assessment of water quality and quantity trends in Kabul aquifers with an outline for future drinking water supplies. CAJWR, 3, 3–11.

    Google Scholar 

  • Zendehbad, M., Cepuder, P., Loiskandl, W., & Stumpp, C. (2019). Source identification of nitrate contamination in the urban aquifer of Mashhad. Iran. Journal of Hydrology: Regional Studies, 25, 100618. https://doi.org/10.1016/j.ejrh.2019.100618

    Article  Google Scholar 

  • Zhang, H., Xu, Y., Cheng, S., Li, Q., & Yu, Q. (2020). Application of the dual-isotope approach and Bayesian isotope mixing model to identify nitrate in groundwater of a multiple land-use area in Chengdu Plain. China. Science of the Total Environment, 717, 137134. https://doi.org/10.1016/jscitotenv.2020.137134

    Article  CAS  Google Scholar 

  • Zhao, Z., Zhang, M., Chen, Y., Ti, C., Tian, J., He, X., Yu, K., Zhu, W., Yan, X., & Wang, Y. (2022). Traceability of nitrate polluted hotspots in plain river networks of Yangtze River delta by nitrogen and oxygen isotopes coupling Bayesian model. Environmental Pollution, 315, 120438. https://doi.org/10.1016/j.envpol.2022.120438

    Article  CAS  Google Scholar 

  • Zheng, Y., Li, F., Zheng, Q., Li, J., & Liu, Q. (2014). Tracing nitrate pollution sources and transformation in surface and groundwaters using environmental isotopes. Science of the Total Environment, 490, 213–222. https://doi.org/10.1016/j.scitotenv.2014.05.004

    Article  CAS  Google Scholar 

  • Zhu, A., Chen, J., Gao, L., Shimizu, Y., Liang, D., Yi, M., & Cao, L. (2019). Combined microbial and isotopic signature approach to identify nitrate sources and transformation processes in groundwater. Chemosphere, 228, 721–734. https://doi.org/10.1016/j.chemosphere.2019.04.163

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the U.S. Geological Survey (USGS) and Afghanistan Geological Survey (AGS) for access to the isotope and hydrochemical data of the Chakari Basin. The authors are also grateful to two anonymous reviewers for useful comments and constructive suggestions, which really helped to improve the manuscript.

Funding

The research did not receive any specific grant or fund from any funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were carried out AZ, AF, and TJM. The first draft of the manuscript was written by AZ and all authors reviewed and commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abdulhalim Zaryab.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 14 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaryab, A., Farahmand, A. & Mack, T.J. Identification and apportionment of groundwater nitrate sources in Chakari Plain (Afghanistan). Environ Geochem Health 45, 7813–7827 (2023). https://doi.org/10.1007/s10653-023-01684-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01684-8

Keywords

Navigation