Skip to main content
Log in

Effects of dissolved organic matter derived from cow manure on heavy metal(loid)s and bacterial community dynamics in mercury-thallium mining waste slag

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Organic amendments in aided phytostabilization of waste slag containing high levels of heavy metal (loid)s (HMs) are an important way to control the release of HMs in situ. However, the effects of dissolved organic matter (DOM) derived from organic amendments on HMs and microbial community dynamics in waste slag are still unclear. Here, the effect of DOM derived from organic amendments (cow manure) on the geochemical behaviour of HMs and the bacterial community dynamics in mercury (Hg)-thallium (Tl) mining waste slag were investigated. The results showed that the Hg-Tl mining waste slag without the addition of DOM continuously decreased the pH and increased the EC, Eh, SO42−, Hg, and Tl levels in the leachate with increasing incubation time. The addition of DOM significantly increased the pH, EC, SO42−, and arsenic (As) levels but decreased the Eh, Hg, and Tl levels. The addition of DOM significantly increased the diversity and richness of the bacterial community. The dominant bacterial phyla (Proteobacteria, Firmicutes, Acidobacteriota, Actinobacteriota, and Bacteroidota) and genera (Bacillus, Acinetobacter, Delftia, Sphingomonas, and Enterobacter) were changed in association with increases in DOM content and incubation time. The DOM components in the leachate were humic-like substances (C1 and C2), and the DOC content and maximum fluorescence intensity (FMax) values of C1 and C2 in the leachate decreased and first increased and then decreased with increasing incubation time. The correlations between HMs and DOM and the bacterial community showed that the geochemical behaviours of HMs in Hg-Tl mining waste slag were directly influenced by DOM-mediated properties and indirectly influenced by DOM regulation of bacterial community changes. Overall, these results indicated that DOM properties associated with bacterial community changes increased As mobilization but decreased Hg and Tl mobilization from Hg-Tl mining waste slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

Data availability

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Antić-Mladenović, S., Frohne, T., Kresović, M., Stärk, H. J., Savić, D., Ličina, V., & Rinklebe, J. (2017). Redox-controlled release dynamics of thallium in periodically flooded arable soil. Chemosphere, 178, 268–276.

    Article  Google Scholar 

  • Antony, R., Willoughby, A. S., Grannas, A. M., Catanzano, V., Sleighter, R. L., Thamban, M., Hatcher, P. G., & Nair, S. (2017). Molecular insights on dissolved organic matter transformation by supraglacial microbial communities. Environmental Science & Technology, 51, 4328–4337.

    Article  CAS  Google Scholar 

  • Asemaninejad, A., Munford, K., Watmough, S., Campbell, D., Glasauer, S., Basiliko, N., & Mykytczuk, N. (2020). Structure of microbial communities in amended and unamended acid-generating mine wastes along gradients of soil amelioration and revegetation. Applied Soil Ecology, 155, 103645.

    Article  Google Scholar 

  • Beauchemin, S., Clemente, J. S., Thibault, Y., Langley, S., Gregorich, E. G., & Tisch, B. (2018). Geochemical stability of acid-generating pyrrhotite tailings 4 to 5 years after addition of oxygen-consuming organic covers. Science of the Total Environment, 645, 1643–1655.

    Article  CAS  Google Scholar 

  • Belzile, N., & Chen, Y. (2017). Thallium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles. Applied Geochemistry, 84, 218–243.

    Article  CAS  Google Scholar 

  • Biswas, R., Vivekanand, V., Saha, A., Ghosh, A., & Sarkar, A. (2019). Arsenite oxidation by a facultative chemolithotrophic Delftia spp. BAs29 for its potential application in groundwater arsenic bioremediation. International Biodeterioration & Biodegradation, 136, 55–62.

    Article  CAS  Google Scholar 

  • Chen, J., LeBoeuf, E. J., Dai, S., & Gu, B. (2003). Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere, 50, 639–647.

    Article  CAS  Google Scholar 

  • Chen, Y., Li, J., Chen, L., Hua, Z., Huang, L., Liu, J., Xu, B., Liao, B., & Shu, W. (2014). Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage. Environmental Science & Technology, 48, 5537–5545.

    Article  CAS  Google Scholar 

  • Chen, L., Li, J., Chen, Y., Huang, L., Hua, Z., Hu, M., & Shu, W. (2013). Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings. Environmental Microbiology, 15, 2431–2444.

    Article  CAS  Google Scholar 

  • Chen, H., Li, W., Wang, J., Xu, H., Liu, Y., Zhang, Z., Li, Y., & Zhang, Y. (2019). Adsorption of cadmium and lead ions by phosphoric acid-modified biochar generated from chicken feather: Selective adsorption and influence of dissolved organic matter. Bioresource Technology, 292, 121948.

    Article  CAS  Google Scholar 

  • Coward, E. K., Ohno, T., & Plante, A. F. (2018). Adsorption and molecular fractionation of dissolved organic matter on iron-bearing mineral matrices of varying crystallinity. Environmental Science & Technology, 52, 1036–1044.

    Article  CAS  Google Scholar 

  • Deng, R., Tang, Z., Hou, B., Ren, B., Wang, Z., Zhu, C., Kelly, S., & Hursthouse, A. (2020). Microbial diversity in soils from antimony mining sites: Geochemical control promotes species enrichment. Environmental Chemistry Letters, 18, 911–922.

    Article  CAS  Google Scholar 

  • Deonarine, A., Kolker, A., Doughten, M. W., Holland, J. T., & Bailoo, J. D. (2021). Mobilization of arsenic from coal fly ash in the presence of dissolved organic matter. Applied Geochemistry, 128, 104950.

    Article  CAS  Google Scholar 

  • Eckley, C. S., Luxton, T. P., Stanfield, B., Baldwin, A., Holloway, J., McKernan, J., & Johnson, M. G. (2021). Effect of organic matter concentration and characteristics on mercury mobilization and methylmercury production at an abandoned mine site. Environmental Pollution, 271, 116369.

    Article  CAS  Google Scholar 

  • Elghali, A., Benzaazoua, M., Bouzahzah, H., Abdelmoula, M., Dynes, J. J., & Jamieson, H. E. (2021). Role of secondary minerals in the acid generating potential of weathered mine tailings: Crystal-chemistry characterization and closed mine site management involvement. Science of the Total Environment, 784, 147105.

    Article  CAS  Google Scholar 

  • España, H., Bas, F., Zornoza, R., Masaguer, A., Gandarillas, M., Arellano, E., & Ginocchio, R. (2019). Effectiveness of pig sludge as organic amendment of different textural class mine tailings with different periods of amendment-contact time. Journal of Environmental Management, 230, 311–318.

    Article  Google Scholar 

  • Fan, Y., Zheng, C., Huo, A., Wang, Q., Shen, Z., Xue, Z., & He, C. (2019). Investigating the binding properties between antimony(V) and dissolved organic matter (DOM) under different pH conditions during the soil sorption process using fluorescence and FTIR spectroscopy. Ecotoxicology and Environmental Safety, 181, 34–42.

    Article  CAS  Google Scholar 

  • Frost, R. L., Cash, G. A., & Kloprogge, J. T. (1998). `Rocky Mountain leather’, sepiolite and attapulgite—an infrared emission spectroscopic study. Vibrational Spectroscopy, 16, 173–184.

    Article  CAS  Google Scholar 

  • Geng, H., Wang, F., Yan, C., Tian, Z., Chen, H., Zhou, B., Yuan, R., & Yao, J. (2020). Leaching behavior of metals from iron tailings under varying pH and low-molecular-weight organic acids. Journal of Hazardous Materials, 383, 121136.

    Article  CAS  Google Scholar 

  • Guo, X., Xie, X., Liu, Y., Wang, C., Yang, M., & Huang, Y. (2020). Effects of digestate DOM on chemical behavior of soil heavy metals in an abandoned copper mining areas. Journal of Hazardous Materials, 393, 122436.

    Article  CAS  Google Scholar 

  • Guo, Z., Yang, J., Sarkodie, E. K., Li, K., Deng, Y., Meng, D., Miao, B., Liu, H., Liang, Y., Yin, H., Liu, X., & Jiang, L. (2021). Vertical distribution of the toxic metal(loid)s chemical fraction and microbial community in waste heap at a nonferrous metal mining site. Ecotoxicology and Environmental Safety, 228, 113037.

    Article  CAS  Google Scholar 

  • Gupta, A., Dutta, A., Panigrahi, M. K., & Sar, P. (2021). Geomicrobiology of mine tailings from malanjkhand copper project, India. Geomicrobiology Journal, 38, 97–114.

    Article  CAS  Google Scholar 

  • Hammond, C. M., Root, R. A., Maier, R. M., & Chorover, J. (2020). Arsenic and iron speciation and mobilization during phytostabilization of pyritic mine tailings. Geochimica Et Cosmochimica Acta, 286, 306–323.

    Article  CAS  Google Scholar 

  • Huang, Y., Li, X., Jiang, Z., Liang, Z., Wang, P., Liu, Z., Li, L., Yin, H., Jia, Y., Huang, Z., Liu, S., & Jiang, C. (2021). Key factors governing microbial community in extremely acidic mine drainage (pH< 3). Frontiers in Microbiology, 12, 761579.

    Article  Google Scholar 

  • Jiang, L., Liu, X., Yin, H., Liang, Y., Liu, H., Miao, B., Peng, Q., Meng, D., Wang, S., Yang, J., & Guo, Z. (2020). The utilization of biomineralization technique based on microbial induced phosphate precipitation in remediation of potentially toxic ions contaminated soil: A mini review. Ecotoxicology and Environmental Safety, 191, 110009.

    Article  CAS  Google Scholar 

  • Jones, D. S., Lapakko, K. A., Wenz, Z. J., Olson, M. C., Roepke, E. W., Sadowsky, M. J., Novak, P. J., & Bailey, J. V. J. A. E. M. (2017). Novel microbial assemblages dominate weathered sulfide-bearing rock from copper-nickel deposits in the Duluth Complex, Minnesota, USA. Applied and Environmental Microbiology, 83, e00909-00917.

    Article  CAS  Google Scholar 

  • Karn, S. K., & Pan, X. (2016). Role of Acinetobacter sp. in arsenite As(III) oxidation and reducing its mobility in soil. Chemistry and Ecology, 32, 460–471.

    Article  CAS  Google Scholar 

  • Kellerman, A. M., Guillemette, F., Podgorski, D. C., Aiken, G. R., Butler, K. D., & Spencer, R. G. M. (2018). Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems. Environmental Science & Technology, 52, 2538–2548.

    Article  CAS  Google Scholar 

  • Kida, M., Kojima, T., Tanabe, Y., Hayashi, K., Kudoh, S., Maie, N., & Fujitake, N. (2019). Origin, distributions, and environmental significance of ubiquitous humic-like fluorophores in Antarctic lakes and streams. Water Research, 163, 114901.

    Article  CAS  Google Scholar 

  • Lee, Y. K., & Hur, J. (2020). Adsorption of microplastic-derived organic matter onto minerals. Water Research, 187, 116426.

    Article  CAS  Google Scholar 

  • Li, M. S. (2006). Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Science of the Total Environment, 357, 38–53.

    Article  CAS  Google Scholar 

  • Li, X., Chen, Q., He, C., Shi, Q., Chen, S., Reid, B., Zhu, Y., & Sun, G. (2018). Organic carbon amendments affect the chemodiversity of soil dissolved organic matter and its associations with soil microbial communities. Environmental Science & Technology, 53(1), 50–59.

    Article  Google Scholar 

  • Li, T., Di, Z., Yang, X., & Sparks, D. L. (2011). Effects of dissolved organic matter from the rhizosphere of the hyperaccumulator Sedum alfredii on sorption of zinc and cadmium by different soils. Journal of Hazardous Materials, 192, 1616–1622.

    Article  CAS  Google Scholar 

  • Li, M., Drosos, M., Hu, H., He, X., Wang, G., Zhang, H., Hu, Z., & Xi, B. (2019). Organic amendments affect dissolved organic matter composition and mercury dissolution in pore waters of mercury-polluted paddy soil. Chemosphere, 232, 356–365.

    Article  CAS  Google Scholar 

  • Li, Y., Heal, K., Wang, S., Cao, S., & Zhou, C. (2021b). Chemodiversity of soil dissolved organic matter and its association with soil microbial communities along a chronosequence of Chinese fir monoculture plantations. Frontiers in Microbiology, 12, 729344.

    Article  Google Scholar 

  • Li, S., Wu, J., Huo, Y., Zhao, X., & Xue, L. (2021a). Profiling multiple heavy metal contamination and bacterial communities surrounding an iron tailing pond in Northwest China. Science of the Total Environment, 752, 141827.

    Article  CAS  Google Scholar 

  • Li, Y., Zhang, B., Cheng, M., Li, Y., Hao, L., & Guo, H. (2016). Spontaneous arsenic (III) oxidation with bioelectricity generation in single-chamber microbial fuel cells. Journal of Hazardous Materials, 306, 8–12.

    Article  CAS  Google Scholar 

  • Li, Y., Zhang, M., Xu, R., Lin, H., Sun, X., Xu, F., Gao, P., Kong, T., Xiao, E., Yang, N., & Sun, W. (2021c). Arsenic and antimony co-contamination influences on soil microbial community composition and functions: Relevance to arsenic resistance and carbon, nitrogen, and sulfur cycling. Environment International, 153, 106522.

    Article  CAS  Google Scholar 

  • Li, S., Zhao, B., Jin, M., Hu, L., Zhong, H., & He, Z. (2020). A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter. Journal of Hazardous Materials, 400, 123255.

    Article  CAS  Google Scholar 

  • Lin, J., Yin, M., Wang, J., Liu, J., Tsang, D. C. W., Wang, Y., Lin, M., Li, H., Zhou, Y., Song, G., & Chen, Y. (2020). Geochemical fractionation of thallium in contaminated soils near a large-scale Hg-Tl mineralised area. Chemosphere, 239, 124775.

    Article  CAS  Google Scholar 

  • Liu, Y., Wu, S., Saavedra-Mella, F., Nguyen, T. A. H., Southam, G., Chan, T., Lu, Y., & Huang, L. (2020). Rhizosphere modifications of iron-rich minerals and forms of heavy metals encapsulated in sulfidic tailings hardpan. Journal of Hazardous Materials, 384, 121444.

    Article  CAS  Google Scholar 

  • Liu, S., Xi, B., Qiu, Z., He, X., Zhang, H., Dang, Q., Zhao, X., & Li, D. (2019c). Succession and diversity of microbial communities in landfills with depths and ages and its association with dissolved organic matter and heavy metals. Science of the Total Environment, 651, 909–916.

    Article  CAS  Google Scholar 

  • Liu, J., Yao, J., Duran, R., Mihucz, V. G., & Hudson-Edwards, K. A. (2019a). Bacterial shifts during in-situ mineralization bio-treatment to non-ferrous metal(loid) tailings. Environmental Pollution, 255, 113165.

    Article  CAS  Google Scholar 

  • Liu, J., Yin, M., Zhang, W., Tsang, D. C. W., Wei, X., Zhou, Y., Xiao, T., Wang, J., Dong, X., Sun, Y., Chen, Y., Li, H., & Hou, L. (2019b). Response of microbial communities and interactions to thallium in contaminated sediments near a pyrite mining area. Environmental Pollution, 248, 916–928.

    Article  CAS  Google Scholar 

  • Luo, Y., Wu, Y., Fu, T., Wang, H., Xing, R., & Zheng, Z. (2018a). Effects of a proline solution cover on the geochemical and mineralogical characteristics of high-sulfur coal gangue. Acta Geochimica, 37, 701–714.

    Article  CAS  Google Scholar 

  • Luo, Y., Wu, Y., Qiu, J., Wang, H., & Yang, L. (2019a). Suitability of four woody plant species for the phytostabilization of a zinc smelting slag site after 5 years of assisted revegetation. Journal of Soils and Sediments, 19, 702–715.

    Article  CAS  Google Scholar 

  • Luo, Y., Wu, Y., Shu, J., & Wu, Z. (2019b). Effect of particulate organic matter fractions on the distribution of heavy metals with aided phytostabilization at a zinc smelting waste slag site. Environmental Pollution, 253, 330–341.

    Article  CAS  Google Scholar 

  • Luo, Y., Wu, Y., Wang, H., Xing, R., Zheng, Z., Qiu, J., & Yang, L. (2018b). Bacterial community structure and diversity responses to the direct revegetation of an artisanal zinc smelting slag after 5 years. Environmental Science and Pollution Research, 25, 14773–14788.

    Article  CAS  Google Scholar 

  • Luo, Y., Zheng, Z., Wu, P., & Wu, Y. (2022). Effect of different direct revegetation strategies on the mobility of heavy metals in artificial zinc smelting waste slag: Implications for phytoremediation. Chemosphere, 286, 131678.

    Article  CAS  Google Scholar 

  • Madejová, J., Kečkéš, J., Pálková, H., & Komadel, P. (2002). Identification of components in smectite/kaolinite mixtures. Clay Minerals, 37, 377–388.

    Article  Google Scholar 

  • Mello, I. S., Targanski, S., Pietro-Souza, W., Frutuoso Stachack, F. F., Terezo, A. J., & Soares, M. A. (2020). Endophytic bacteria stimulate mercury phytoremediation by modulating its bioaccumulation and volatilization. Ecotoxicology and Environmental Safety, 202, 110818.

    Article  CAS  Google Scholar 

  • Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environmental Health Perspectives, 116, 278.

    Article  CAS  Google Scholar 

  • Meng, W., Chen, Z., Yu, Z., Wu, P., & Li, X. (2021). Reservoir sediment records of polymetallic contamination (Cd, Pb, Zn, As, Hg) in the zinc smelting area of Weining County, Guizhou Province China. Environmental Earth Sciences, 80, 378.

    Article  CAS  Google Scholar 

  • Mergeay, M., Monchy, S., Vallaeys, T., Auquier, V., Benotmane, A., Bertin, P., Taghavi, S., Dunn, J., van der Lelie, D., & Wattiez, R. (2003). Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: Towards a catalogue of metal-responsive genes. FEMS Microbiology Reviews, 27, 385–410.

    Article  CAS  Google Scholar 

  • Mladenov, N., Zheng, Y., Simone, B., Bilinski, T. M., McKnight, D. M., Nemergut, D., Radloff, K. A., Rahman, M. M., & Ahmed, K. M. (2015). Dissolved organic matter quality in a shallow aquifer of Bangladesh: Implications for arsenic mobility. Environmental Science & Technology, 49, 10815–10824.

    Article  CAS  Google Scholar 

  • Mondal, P., Majumder, C. B., & Mohanty, B. (2008). Treatment of arsenic contaminated water in a batch reactor by using Ralstonia eutropha MTCC 2487 and granular activated carbon. Journal of Hazardous Materials, 153, 588–599.

    Article  CAS  Google Scholar 

  • Murciego, A., Álvarez-Ayuso, E., Pellitero, E., Rodríguez, M. A., García-Sánchez, A., Tamayo, A., Rubio, J., Rubio, F., & Rubin, J. (2011). Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations. Journal of Hazardous Materials, 186, 590–601.

    Article  CAS  Google Scholar 

  • Murphy, K. R., Stedmon, C. A., Graeber, D., & Bro, R. (2013). Fluorescence spectroscopy and multi-way techniques. PARAFAC. Analytical Methods, 5, 6557–6566.

    Article  CAS  Google Scholar 

  • Nagel, A. H., Cuss, C. W., Goss, G. G., Shotyk, W., & Glover, C. N. (2019). The effect of major ions and dissolved organic matter on complexation and toxicity of dissolved thallium to Daphnia magna. Environmental Toxicology and Chemistry, 38, 2472–2479.

    Article  CAS  Google Scholar 

  • Narayanan, M., Kandasamy, G., He, Z., Kandasamy, S., Alfarhan, A. H., & Pugazhendhi, A. (2021). Phytoextraction competence of J. curcas L. on ore waste dump of the bauxite mine under the influence of multi potential Bacillus cereus. Environmental Technology & Innovation, 21, 101221.

    Article  CAS  Google Scholar 

  • Nayak, A. K., Basu, A., Panda, S. S., Dhal, N. K., & Lal, R. K. (2019). Phytoremediation of heavy metal-contaminated tailings soil by symbiotic interaction of Cymbopogon citratus and Solanum torvum with Bacillus Cereus T1B3. Soil and Sediment Contamination: An International Journal, 28, 547–568.

    Article  CAS  Google Scholar 

  • Qi, H., Wei, Z., Zhang, J., Zhao, Y., Wu, J., Gao, X., Liu, Z., & Li, Y. (2019). Effect of MnO2 on biotic and abiotic pathways of humic-like substance formation during composting of different raw materials. Waste Management, 87, 326–334.

    Article  CAS  Google Scholar 

  • Qian, G., Xu, L., Li, N., Wang, K., Qu, Y., & Xu, Y. (2022). Enhanced arsenic migration in tailings soil with the addition of humic acid, fulvic acid and thiol-modified humic acid. Chemosphere, 286, 131784.

    Article  CAS  Google Scholar 

  • Qiu, G., Feng, X., Wang, S., & Xiao, T. (2006). Mercury contaminations from historic mining to water, soil and vegetation in Lanmuchang, Guizhou, southwestern China. Science of the Total Environment, 368, 56–68.

    Article  CAS  Google Scholar 

  • Qu, C., Chen, W., Hu, X., Cai, P., Chen, C., Yu, X.-Y., & Huang, Q. (2019). Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors. Environment International, 131, 104995.

    Article  CAS  Google Scholar 

  • Rakotonimaro, T. V., Guittony, M., & Neculita, C. M. (2021). Compaction of peat cover over desulfurized gold mine tailings changes: Arsenic speciation and mobility. Applied Geochemistry, 128, 104923.

    Article  CAS  Google Scholar 

  • Rasool, A., Nasim, W., Xiao, T., Ali, W., Shafeeque, M., Sultana, S. R., Fahad, S., Munis, M. F. H., & Chaudhary, H. J. (2020). Microbial diversity response in thallium polluted riverbank soils of the Lanmuchang. Ecotoxicology and Environmental Safety, 187, 109854.

    Article  CAS  Google Scholar 

  • Rasool, A., & Xiao, T. (2018). Response of microbial communities to elevated thallium contamination in river sediments. Geomicrobiology Journal, 35, 854–868.

    Article  CAS  Google Scholar 

  • Rinklebe, J., Shaheen, S. M., El-Naggar, A., Wang, H., Du Laing, G., Alessi, D. S., & Ok, Y. S. (2020). Redox-induced mobilization of Ag, Sb, Sn, and Tl in the dissolved, colloidal and solid phase of a biochar-treated and un-treated mining soil. Environment International, 140, 105754.

    Article  CAS  Google Scholar 

  • Risueño, Y., Petri, C., & Conesa, H. M. (2021). A critical assessment on the short-term response of microbial relative composition in a mine tailings soil amended with biochar and manure compost. Journal of Hazardous Materials, 417, 126080.

    Article  Google Scholar 

  • Robertson, L. M., Wu, S., You, F., Huang, L., Southam, G., Chan, T. S., Lu, Y. R., & Bond, P. L. (2020). Geochemical and mineralogical changes in magnetite Fe-ore tailings induced by biomass organic matter amendment. Science of the Total Environment, 724, 138196.

    Article  CAS  Google Scholar 

  • Shan, G., Xu, J., Jiang, Z., Li, M., & Li, Q. (2019). The transformation of different dissolved organic matter subfractions and distribution of heavy metals during food waste and sugarcane leaves co-composting. Waste Management, 87, 636–644.

    Article  CAS  Google Scholar 

  • Shao, Z., He, P., Zhang, D., & Shao, L. (2009). Characterization of water-extractable organic matter during the biostabilization of municipal solid waste. Journal of Hazardous Materials, 164, 1191–1197.

    Article  CAS  Google Scholar 

  • She, Z., Wang, J., He, C., Pan, X., Shi, Q., Shao, R., Li, Y., & Yue, Z. (2022). New insights into microbial interactions with dissolved organic matter in acid mine drainage with the integration of microbial community and chemical composition analysis. ACS ES&T Water, 2, 278–287.

    Article  CAS  Google Scholar 

  • Shi, Z., Cao, Z., Qin, D., Zhu, W., Wang, Q., Li, M., & Wang, G. (2013). Correlation models between environmental factors and bacterial resistance to antimony and copper. PLoS ONE, 8, e78533.

    Article  CAS  Google Scholar 

  • Stedmon, C. A., & Bro, R. (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnology and Oceanography: Methods, 6, 572–579.

    CAS  Google Scholar 

  • Sultana, M., Vogler, S., Zargar, K., Schmidt, A.-C., Saltikov, C., Seifert, J., & Schlömann, M. (2012). New clusters of arsenite oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil. Archives of Microbiology, 194, 623–635.

    Article  CAS  Google Scholar 

  • Tian, T., Liu, Z., Zhu, F., Hartley, W., Ye, Y., & Xue, S. (2020). Improvement of aggregate-associated organic carbon and its stability in bauxite residue by substrate amendment addition. Land Degradation & Development, 31, 2405–2416.

    Article  Google Scholar 

  • Traving, S. J., Rowe, O., Jakobsen, N. M., Sørensen, H., Dinasquet, J., Stedmon, C. A., Andersson, A., & Riemann, L. (2017). The effect of increased loads of dissolved organic matter on estuarine microbial community composition and function. Frontiers in Microbiology, 8, 351.

    Article  Google Scholar 

  • Vaxevanidou, K., Christou, C., Kremmydas, G. F., Georgakopoulos, D. G., & Papassiopi, N. (2015). Role of indigenous arsenate and iron(III) respiring microorganisms in controlling the mobilization of arsenic in a contaminated soil sample. Bulletin of Environmental Contamination and Toxicology, 94, 282–288.

    Article  CAS  Google Scholar 

  • Wang, L., Ji, B., Hu, Y., Liu, R., & Sun, W. (2017a). A review on in situ phytoremediation of mine tailings. Chemosphere, 184, 594–600.

    Article  CAS  Google Scholar 

  • Wang, K., Mao, H., & Li, X. (2018). Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent. Bioresource Technology, 249, 527–535.

    Article  CAS  Google Scholar 

  • Wang, X., Nie, Z., He, L., Wang, Q., & Sheng, X. (2017b). Isolation of As-tolerant bacteria and their potentials of reducing As and Cd accumulation of edible tissues of vegetables in metal(loid)-contaminated soils. Science of the Total Environment, 579, 179–189.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhang, G., Wang, H., Cheng, Y., Liu, H., Jiang, Z., Li, P., & Wang, Y. (2021). Effects of different dissolved organic matter on microbial communities and arsenic mobilization in aquifers. Journal of Hazardous Materials, 411, 125146.

    Article  CAS  Google Scholar 

  • Watanabe, T., Kojima, H., & Fukui, M. (2016). Sulfuriferula thiophila sp. nov., a chemolithoautotrophic sulfur-oxidizing bacterium, and correction of the name Sulfuriferula plumbophilusWatanabe, Kojima and Fukui 2015 to Sulfuriferula plumbiphila corrig. International Journal of Systematic and Evolutionary Microbiology, 66, 2041–2045.

    Article  CAS  Google Scholar 

  • Wei, Z., Hao, Z., Li, X., Guan, Z., Cai, Y., & Liao, X. (2019). The effects of phytoremediation on soil bacterial communities in an abandoned mine site of rare earth elements. Science of the Total Environment, 670, 950–960.

    Article  CAS  Google Scholar 

  • Wen, J., Wu, Y., Li, X., Lu, Q., Luo, Y., Duan, Z., & Li, C. (2021a). Migration characteristics of heavy metals in the weathering process of exposed argillaceous sandstone in a mercury-thallium mining area. Ecotoxicology and Environmental Safety, 208, 111751.

    Article  CAS  Google Scholar 

  • Wen, J., Wu, Y., Lu, Q., Li, X., Yang, L., & Duan, Z. (2021b). Releasing characteristics and biological toxicity of the heavy metals from waste of mercury-thalliummine in southwest Guizhou of China. Bulletin of Environmental Contamination and Toxicology, 107, 1111–1120.

    Article  CAS  Google Scholar 

  • Wu, S., Liu, Y., Bougoure, J. J., Southam, G., Chan, T., Lu, Y., Haw, S., Nguyen, T. A. H., You, F., & Huang, L. (2019). Organic matter amendment and plant colonization drive mineral weathering, organic carbon sequestration, and water-stable aggregation in magnetite Fe ore tailings. Environmental Science & Technology, 53, 13720–13731.

    Article  CAS  Google Scholar 

  • Wu, X., Wu, L., Liu, Y., Zhang, P., Li, Q., Zhou, J., Hess, N. J., Hazen, T. C., Yang, W., & Chakraborty, R. (2018). Microbial interactions with dissolved organic matter drive carbon dynamics and community succession. Frontiers in Microbiology, 9, 1234.

    Article  Google Scholar 

  • Wu, S., You, F., Boughton, B., Liu, Y., Nguyen, T. A. H., Wykes, J., Southam, G., Robertson, L. M., Chan, T., Lu, Y., Lutz, A., Yu, D., Yi, Q., Saha, N., & Huang, L. (2021). Chemodiversity of dissolved organic matter and its molecular changes driven by rhizosphere activities in Fe ore tailings undergoing eco-engineered pedogenesis. Environmental Science & Technology, 55, 13045–13060.

    CAS  Google Scholar 

  • Wu, J., Zhao, Y., Qi, H., Zhao, X., Yang, T., Du, Y., Zhang, H., & Wei, Z. (2017). Identifying the key factors that affect the formation of humic substance during different materials composting. Bioresource Technology, 244, 1193–1196.

    Article  CAS  Google Scholar 

  • Xiao, T., Guha, J., Boyle, D., Liu, C., & Chen, J. (2004). Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China. Science of the Total Environment, 318, 223–244.

    Article  CAS  Google Scholar 

  • Xiao, X., Xi, B., He, X., Zhang, H., Li, D., Zhao, X., & Zhang, X. (2019). Hydrophobicity-dependent electron transfer capacities of dissolved organic matter derived from chicken manure compost. Chemosphere, 222, 757–765.

    Article  CAS  Google Scholar 

  • Xu, X., Kang, J., Shen, J., Zhao, S., Wang, B., Zhang, X., & Chen, Z. (2021). EEM–PARAFAC characterization of dissolved organic matter and its relationship with disinfection by-products formation potential in drinking water sources of northeastern China. Science of the Total Environment, 774, 145297.

    Article  CAS  Google Scholar 

  • Xue, S., Liu, Z., Fan, J., Xue, R., Guo, Y., Chen, W., Hartley, W., & Zhu, F. (2022). Insights into variations on dissolved organic matter of bauxite residue during soil-formation processes following 2-year column simulation. Environmental Pollution, 292, 118326.

    Article  CAS  Google Scholar 

  • Yan, C., Wang, F., Liu, H., Liu, H., Pu, S., Lin, F., Geng, H., Ma, S., Zhang, Y., Tian, Z., Chen, H., Zhou, B., & Yuan, R. (2020a). Deciphering the toxic effects of metals in gold mining area: Microbial community tolerance mechanism and change of antibiotic resistance genes. Environmental Research, 189, 109869.

    Article  CAS  Google Scholar 

  • Yan, L., Xie, X., Wang, Y., Qian, K., Chi, Z., Li, J., Deng, Y., & Gan, Y. (2020b). Organic-matter composition and microbial communities as key indicators for arsenic mobility in groundwater aquifers: Evidence from PLFA and 3D fluorescence. Journal of Hydrology, 591, 125308.

    Article  CAS  Google Scholar 

  • Yin, Y., Yin, J., Zhang, W., Tian, H., Hu, Z., Ruan, M., Xu, H., Liu, L., Yan, X., & Chen, D. (2018). FT-IR and Micro-Raman spectroscopic characterization of minerals in high-calcium coal ashes. Journal of the Energy Institute, 91, 389–396.

    Article  CAS  Google Scholar 

  • Zhang, W., Long, J., Zhang, X., Shen, W., & Wei, Z. (2020). Pollution and ecological risk evaluation of heavy metals in the soil and sediment around the HTM tailings pond, Northeastern China. International Journal of Environmental Research and Public Health, 17, 7072.

    Article  CAS  Google Scholar 

  • Zhang, T., Yang, H., Zhang, H., Zhang, P., & Bei, R. (2022). Aluminum extraction from activated coal gangue with carbide slag. Journal of Analytical and Applied Pyrolysis, 163, 105504.

    Article  CAS  Google Scholar 

  • Zhao, X., Huang, J., Lu, J., & Sun, Y. (2019). Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine. Ecotoxicology and Environmental Safety, 170, 218–226.

    Article  CAS  Google Scholar 

  • Zhou, W., Wang, Y., Lian, Z., Yang, T., Zeng, Q., Feng, S., Fang, Z., Shu, W., Huang, L., Ye, Z., Liao, B., & Li, J. (2020a). Revegetation approach and plant identity unequally affect structure, ecological network and function of soil microbial community in a highly acidified mine tailings pond. Science of the Total Environment, 744, 140793.

    Article  CAS  Google Scholar 

  • Zhou, Y., Wang, L., Xiao, T., Chen, Y., Beiyuan, J., She, J., Zhou, Y., Yin, M., Liu, J., Liu, Y., Wang, Y., & Wang, J. (2020b). Legacy of multiple heavy metal(loid)s contamination and ecological risks in farmland soils from a historical artisanal zinc smelting area. Science of the Total Environment, 720, 137541.

    Article  CAS  Google Scholar 

  • Zhu, S., Zheng, H., Liu, W., Liu, C., Guo, M., Huot, H., Morel, J. L., Qiu, R., Chao, Y., & Tang, Y. (2022). Plant-soil feedbacks for the restoration of degraded mine lands: A review. Frontiers in Microbiology, 12, 751794.

    Article  Google Scholar 

Download references

Funding

This study was funded by the Talent Introduction Research Project of Guizhou University (No. [2019]022), the National Natural Science Foundation of China (No. 52004074), and the Guizhou Science and Technology Plan Project in Guizhou Province (No. [2022]4022).

Author information

Authors and Affiliations

Authors

Contributions

YH designed the study, performed the experiments and analysed the data, and contributed to writing-original draft preparation. YL designed the study, analysed the data, and contributed to writing-reviewing and editing. CW performed the experiments. LL performed the experiments. CW performed the experiments. YW contributed to writing-reviewing and editing. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Youfa Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Luo, Y., Wei, C. et al. Effects of dissolved organic matter derived from cow manure on heavy metal(loid)s and bacterial community dynamics in mercury-thallium mining waste slag. Environ Geochem Health 45, 5857–5877 (2023). https://doi.org/10.1007/s10653-023-01607-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01607-7

Keywords

Navigation