Skip to main content

Advertisement

Log in

Lead dissociation and redistribution properties of actual contaminated farmland soil after long-term EKAPR treatment

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Electrokinetic-assisted phytoremediation (EKAPR) is a potential technology much affected by the metal species and accessibility to plant roots. In this study, Pb-contaminated red soil was remediated with Sedum plumbizincicola to investigate the changes in soil pH, available nutrients, dissociation and redistribution of Pb under a long-term periodic reversal direct-current electric field. This approach could effectively activate soil P, K, organic matter (OM) and Pb, without significant soil acidification; the effect was positively correlated with applied voltage. Soil Pb can be continuously dissociated, migrated, and tended to accumulate in the middle region. The maximum Pb removal rate in the anodic section of the EKAPR system was 21.4%, and the aggregation rate in middle regions was 14.4%, higher than the available Pb content of the original soil. The Pb desorption in aqueous solution increased significantly with increasing voltage, irrespective of the solution pH. At a voltage of 20 V, the Pb cumulative desorption content reached 91.1 mg kg−1 (pH = 7), which was 2.7 times than that without electric field (33.2 mg kg−1). Compared to original soil (2.80 mg kg−1) and the control (14.54 mg kg−1), the available Pb in the anode section of EKAPR system (20.66 mg kg−1) increased by 637.9% and 42.1%, respectively. These results indicated that except for the indirect influence of soil pH changes, electrodynamics can directly promote the bioavailability and dissociation of Pb at the soil–water interface. This finding provides a new perspective for further studies on the mechanism of Pb speciation evolution and accumulation changes using EKAPR.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aboughalma, H., Bi, R., & Schlaak, M. (2008). Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants. Journal of Environmental Science and Health, 43(8), 926–933.

    Article  CAS  Google Scholar 

  • Acar, Y. B., & Alshawabkeh, A. N. (1993). Electrokinetic remediation technology has recently made significant strides. Environmental Science & Technology, 27, 2638–2647.

    Article  CAS  Google Scholar 

  • Bao, S. D. (2013). Soil agrochemical analysis (3rd ed., pp. 25–132). China Agriculture Press.

    Google Scholar 

  • Beyrami, H. (2021). Effect of different treatments on electrokinetic remediation of Zn, Pb and Cd from a contaminated calcareous soil. Chinese Journal of Chemical Engineering, 38, 255–265.

    Article  CAS  Google Scholar 

  • Boonmeerati, U., & Sampanpanish, P. (2021). Enhancing arsenic phytoextraction of dwarf napier grass (Pennisetum purpureum cv. Mott) from gold mine tailings by electrokinetics remediation with phosphate and EDTA. Journal of Hazardous, Toxic, and Radioactive Waste, 25(4), 04021027.

    Article  CAS  Google Scholar 

  • Cameselle, C., & Gouveia, S. (2018). Phytoremediation of mixed contaminated soil enhanced with electric current. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2018.08.062

    Article  Google Scholar 

  • Cameselle, C., Chirakkara, R. A., & Reddy, K. R. (2013). Electrokinetic-enhanced phytoremediation of soils: Status and opportunities. Chemosphere, 93(4), 626–639.

    Article  CAS  Google Scholar 

  • Cameselle, C., Gouveia, S., & Cabo, A. (2021). Enhanced electrokinetic remediation for the removal of heavy metals from contaminated soils. Applied Sciences, 11(4), 1799.

    Article  CAS  Google Scholar 

  • Cang, L., Wang, Q. Y., Zhou, D. M., & Xu, H. (2011). Effects of electrokinetic-assisted phytoremediation of a multiple-metal contaminated soil on soil metal bioavailability and uptake by Indian mustard. Separation and Purification Technology, 79(2), 246–253.

    Article  CAS  Google Scholar 

  • Cang, L., Zhou, D. M., Wang, Y. Q., & Fan, G. P. (2012). Impact of electrokinetic-assisted phytoremediation of heavy metal contaminated soil on its physicochemical properties, enzymatic and microbial activities. Electrochimica Acta, 86, 41–48.

    Article  CAS  Google Scholar 

  • Chang, J. H., Dong, C. D., & Shen, S. Y. (2018). A specific configuration of circulation-enhanced electro-kinetics (CEEK) to remediate real-site Cd and Pb contaminated soils. Journal of Hazardous Materials, 359, 408–413.

    Article  CAS  Google Scholar 

  • Chen, X. J., Shen, Z. M., Lei, Y. M., Yang, M., Zheng, S. S., Ju, B. X., & Wang, W. H. (2006). Effects of electrokinetics on bioavailability of soil nutrients. Soil Science, 171(8), 638–647.

    Article  CAS  Google Scholar 

  • Chirakkara, R. A., Reddy, K. R., & Cameselle, C. (2015). Electrokinetic amendment in phytoremediation of mixed contaminated soil. Electrochimica Acta. https://doi.org/10.1016/j.electacta.2015.01.025

    Article  Google Scholar 

  • Couto, N., Guedes, P., Zhou, D. M., & Ribeiro, A. B. (2015). Integrated perspectives of a greenhouse study to upgrade an antimony and arsenic mine soil-potential of enhanced phytotechnologies. Chemical Engineering Journal, 262, 563–570.

    Article  CAS  Google Scholar 

  • Falciglia, P., & Vagliasindi, F. G. A. (2013). Enhanced phytoextraction of lead by Indian mustard using electric field. Chemical Engineering Transactions, 32, 379–384.

    Google Scholar 

  • Fan, G. P., Zhou, D. M., Zhang, Z. H., Ai, Y. C., Zhang, W. G., Shi, G. L., Tong, F., Liu, L. Z., Chen, W., Li, J. Y., & Gao, Y. (2021). Effect of two-dimensional electric field on the growth and cadmium uptake of Sedum plumbizincicola. Separation and Purification Technology, 259, 118121.

    Article  CAS  Google Scholar 

  • Fang, Y. Y., Cao, X. D., & Zhao, L. (2012). Effects of phosphorus amendments and plant growth on the mobility of Pb, Cu, and Zn in a multi-metal-contaminated soil. Environmental Science and Pollution Research International, 19(5), 1659–1667.

    Article  CAS  Google Scholar 

  • Gao, M., Zeng, F. J., Tang, F., Wang, K. D., Xu, X. Y., & Tian, G. M. (2020). An increasing Cr recovery from soil with catholyte-enhanced electrokinetic remediation: Effects on voltage redistribution throughout soil sections. Separation and Purification Technology, 253, 117553.

    Article  CAS  Google Scholar 

  • Gholamreza, A., Sina, S. M., Milad, R., Ahmad, K. D., Mahdie, Y., & Manuel, P. G. J. (2021). Comparison of different extracting agents for the recovery of Pb and Zn through electrokinetic remediation of mine tailings. Journal of Environmental Management, 279, 111728.

    Google Scholar 

  • Gry, S., Lisbeth, M. O., Maria, E., & Pernille, E. J. (2018). Effect of long-term electrodialytic soil remediation on Pb removal and soil weathering. Journal of Hazardous Materials, 358, 459–466.

    Article  Google Scholar 

  • Han, D., Wu, X. Y., Li, R., Tang, X. Q., Xiao, S. B., & Scholz, M. (2021). Critical review of electro-kinetic remediation of contaminated soils and sediments: mechanisms, performances and technologies. Water, Air, & Soil Pollution, 232(8). https://doi.org/10.1007/s11270-021-05182-4

    Article  Google Scholar 

  • Hu, H., Jin, Q., & Kavan, P. (2014). A study of heavy metal pollution in China: current status, pollution-control policies and counter measures. Sustain, 6(9), 5820–5838.

    Article  CAS  Google Scholar 

  • Hu, P. J., Wang, Y. D., Przybyłowicz, W. J., Li, Z., Barnabas, A., Wu, L. H., Luo, Y. M., & Mesjasz-Przybyłowic, J. (2015). Elemental distribution by cryo-micro-PIXE in the zinc and cadmium hyperaccumulator Sedum plumbizincicola grown naturally. Plant and Soil, 388(1/2), 267–282.

    Article  CAS  Google Scholar 

  • Ji, B. J., Li, W. H., Xu, M. Y., Niu, J. C., Zhang, S. L., & Yang, X. Y. (2021). Phosphorus forms of different phosphorus fertilizer varieties in calcareous soil. Scientia Agricultura Sinica, 54(12), 2581–2594.

    Google Scholar 

  • Kartal, S., Aydin, Z., & Tokalioglu, S. (2006). Fractionation of metals in street sediment samples by using the BCR sequential extraction procedure and multivariate statistical elucidation of the data. Journal of Hazardous Materials, 132(1), 80–89.

    Article  CAS  Google Scholar 

  • Kushwaha, A., Hans, N., Kumar, S., & Rani, R. (2018). A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicology and Environmental Safety, 147, 1035–1045.

    Article  CAS  Google Scholar 

  • Laith, H. H., Khalifa, A. A., & Lubna, A. Z. (2021). Electro-kinetic remediation of nickel from contaminated soil using bioremedies banana peels and surfactant-enhanced. Journal of Ecological Engineering, 22(5), 214–220.

    Article  Google Scholar 

  • Li, J. X., Zhang, J., Larson, S. L., Ballard, J. H., Guo, K., Arslan, A., Ma, Y. H., Waggoner, C. A., White, J. R., & Han, F. X. (2019). Electrokinetic-enhanced phytoremediation of uranium-contaminated soil using sunflower and Indian mustard. International Journal of Phytoremediation. https://doi.org/10.1080/15226514.2019.1612847

    Article  Google Scholar 

  • Lima, A. T., Reynolds, H., Ptacek, C. J., Cappellen, P. V., Ottosen, L. M., Pamukcu, S., Alshawabekh, A., O’Carroll, D. M., Riis, C., Cox, E., Gent, D. B., Landis, R., Wang, J., Chowdhury, A. I. A., Secord, E. L., & Sanchez-Hachair, A. (2017). Environmental electrokinetics for a sustainable subsurface. Chemosphere, 181, 122–133.

    Article  CAS  Google Scholar 

  • Liu, Y., Niu, T. Y., Li, T. G., Jiang, M., Xiong, J. F., Li, B., Zhan, F. D., & He, Y. M. (2020). Characteristics and opportunities of electrokinetic-assisted phytoremediation of heavy metal contaminated soil. Chemical Industry and Engineering Progress, 39(12), 5252–5265.

    CAS  Google Scholar 

  • Lucas, M., Vahid, A., & Jay, M. (2019). Electro-osmosis treatment techniques and their effect on dewatering of soils, sediments, and sludge: A review. Soils and Foundations, 59(2), 407–418.

    Article  Google Scholar 

  • Luo, J., Yang, D., Qi, S. H., Wu, J., & Sophie, G. X. W. (2018). Using solar cell to phytoremediate field-scale metal polluted soil assisted by electric field. Ecotoxicology and Environmental Safety, 165, 404–410.

    Article  CAS  Google Scholar 

  • Luo, J., Xing, X. L., Qi, S. H., Wu, J., & Sophie, G. X. W. (2019). Comparing the risk of metal leaching in phytoremediation using Noccaea caerulescens with or without electric field. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.10.167

    Article  Google Scholar 

  • Ma, K. F., Wang, H. F., Lu, J., & Wang, G. L. (2019). Progress on electrokinetic-enhanced phytoremediation of heavy metal contaminated soil. Applied Chemical Industry, 48(03), 709–712.

    Google Scholar 

  • Ma, Q., Wu, Q. T., Feng, Z. G., Tang, Z. P., Xie, Y. S., Long, X. X., Chen, Y. D., Xu, J. C., & Sun, Y. (2021). Remediation performance of real and artificial soil contaminated by heavy metals with vertical electrokinetic technology. Environmental Engineering, 39(01), 181–186.

    CAS  Google Scholar 

  • Mao, X. Y., & Feng, X. (2015). Coupled electro-kinetic remediation and phytoremediation of metal(loid) contaminated soils. Journal of Bioremediation & Biodegradation. https://doi.org/10.4172/2155-6199.1000e163

    Article  Google Scholar 

  • Mao, X. Y., Han, F. X., Shao, X. H., Guo, K., McComb, J., Arslan, Z., & Zhang, Z. Y. (2016). Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil. Ecotoxicology and Environmental Safety, 125, 16–24.

    Article  CAS  Google Scholar 

  • Qi, Z. J., Ran, H. L., Ran, H. Z., Zhu, X. Y., Tan, Z. F., & Zhou, B. Z. (2015). Research on optimum condition of remedying soil contaminated by lead based on the technology of electrokinetic. Guangdong Chemical Industry, 42(20), 50–52.

    CAS  Google Scholar 

  • Rudy, S. P., Yasuhisa, O., & Shunitz, T. (2013). Application of EAPR system on the removal of lead from sandy soil and uptake by Kentucky bluegrass (Poa pratensis L.). Separation and Purification Technology, 102, 34–42.

    Article  Google Scholar 

  • Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18), 2665–2668.

    Article  Google Scholar 

  • Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., Dumat, C., & Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 178, 513–533.

    Article  CAS  Google Scholar 

  • Shen, X. X., Li, C., Li, M., Zhou, K., & Li, Y. Z. (2021). Effect of electric potentials on the removal of Cu and Zn in soil by electrokinetic remediation. Separation Science and Technology, 56(14), 2439–2448.

    Article  CAS  Google Scholar 

  • Sposito, G. (1998). On points of zero charge. Environmental Science & Technology, 32(19), 2815–2819.

    Article  CAS  Google Scholar 

  • Suhailly, J., Zaidi, E., & Ismail, B. (2014). Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX. AIP Conference Proceedings, 1584, 221. https://doi.org/10.1063/1.4866135

    Article  CAS  Google Scholar 

  • Sun, Z. W., Li, Y. L., Yang, S., Yang, J. Y., & Wang, G. W. (2021). Study on the desorption effect of ferric chloride on Pb (II) in aged clay minerals. Safety and Environmental Engineering, 28(05), 201–209. https://doi.org/10.13578/j.cnki.issn.1671-1556.20201056

    Article  CAS  Google Scholar 

  • Tahmasbian, I., & Safari, S. A. A. (2016). Improving the efficiency of phytoremediation using electrically charged plant and chelating agents. Environmental Science and Pollution Research International, 23(3), 2479–2486.

    Article  CAS  Google Scholar 

  • Vocciante, M., Bagatin, R., & Ferro, S. (2017). Enhancements in electroKinetic remediation technology: Focus on water management and wastewater recovery. Chemical Engineering Journal, 309, 708–716.

    Article  CAS  Google Scholar 

  • Vocciante, M., Dovì, V. G., & Ferro, S. (2021). Sustainability in electroKinetic remediation processes: a critical analysis. Sustainability. https://doi.org/10.3390/su13020770

    Article  Google Scholar 

  • Wan, Q. F., Deng, D. C., Bo, Y., & Xia, C. Q. (2012). Phytoremediation and electrokinetic remediation of uranium contaminated soils: A review. Journal of Nuclear and Radiochemistry, 34(3), 148–156.

    CAS  Google Scholar 

  • Wang, J. G. (1995). Soil chemistry of plant nutrition. Beijing Agricultural University Press, 107–119, 131–173.

  • Wang, G. Y., Zhang, S. R., Xu, X. X., Zhong, Q. M., Zhang, C. R., Jia, Y. X., Li, T., Deng, O. P., & Li, Y. (2016). Heavy metal removal by GLDA washing: optimization, redistribution, recycling, and changes in soil fertility. Science of the Total Environment, 569, 569–570.

    Google Scholar 

  • Wang, Y. C., Li, A., & Cui, C. W. (2021). Remediation of heavy metal-contaminated soils by electrokinetic technology: Mechanisms and applicability. Chemosphere, 265, 129071.

    Article  CAS  Google Scholar 

  • Wu, J. N., Wei, B., Lv, Z. W., & Fu, Y. P. (2021). To improve the performance of focusing phenomenon related to energy consumption and removal efficiency in electrokinetic remediation of Cr-contaminated soil. Separation and Purification Technology, 272, 118882.

    Article  CAS  Google Scholar 

  • Wu, Y. F., Li, X., Yu, L., Wang, T. Q., Wang, J. N., & Liu, T. T. (2022). Review of soil heavy metal pollution in China: Spatial distribution, primary sources, and remediation alternatives. Resources, Conservation & Recycling, 181, 106261. https://doi.org/10.1016/j.resconrec.2022.106261

    Article  CAS  Google Scholar 

  • Zhang, M., Zhou, L., Zhang, G. C., Huang, X. Y., Zhu, X. Q., & Feng, Q. Y. (2020). Electrokinetic remediation of lead-cadmium contaminated soil. Environmental Protection of Chemical Industry, 40(03), 284–328.

    Google Scholar 

  • Zhang, Z. C., Ren, W. T., Zhang, J., & Zhu, F. (2021). Electrokinetic remediation of Pb near the e-waste dismantle site with Fe(NO;); as cathode electrolyte. Environmental Technology, 42(6), 884–893.

    Article  CAS  Google Scholar 

  • Zhao, M. M., Ma, D. G., Wang, Q. J., Wang, Y. X., & Sun, X. F. (2022). Electrokinetic remediation of Cd-contaminated soil using low voltage gradients coupled with array adsorption zone and polarity exchange. Process Safety and Environmental Protection, 157, 81–91.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Planning Project of Yunnan Province (No. 2018FD020), National Natural Science Foundation of China (No. 41701362, No. 22066027, No. 51768074), Scientific Research Foundation of Yunnan Agricultural University (No. A2002419), Yunnan Agricultural Foundation Research Projects (No. 202101BD070001-113), in addition, Innovation Team for Farmland Non-pollution Production of Yunnan Province (No. 2017HC015), and Young and Middle-aged Academic and Technical Leaders Reserve Talent Project of Yunnan Province (No. 202205AC160080).

Author information

Authors and Affiliations

Authors

Contributions

MHY contributed to investigation, roles/writing—original draft preparation, and writing—review and editing; DZY contributed to conceptualization, data curation, and formal analysis; GJF contributed to project administration, writing—review and editing, and software; ZX, SXD, and ZWY performed data curation and formal analysis; JM performed validation and visualization; XJF contributed to resources and software; LTG contributed to methodology, funding acquisition, and writing—review and editing.

Corresponding author

Correspondence to Tianguo Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article, neither do they have any relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Duan, Z., Guo, J. et al. Lead dissociation and redistribution properties of actual contaminated farmland soil after long-term EKAPR treatment. Environ Geochem Health 45, 9507–9524 (2023). https://doi.org/10.1007/s10653-022-01450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01450-2

Keywords

Navigation