Skip to main content
Log in

Nitrate contamination and associated health risks of the Benslimane groundwater, Morocco

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Consumption of polluted water has harmful impacts on human health. This study examined the quality of groundwater in the Benslimane area for drinking purposes based on the Water quality index (WQI), Nitrate pollution index (NPI), and Total risk quotient (THQ) for different age groups. A total of 120 groundwater samples were collected for physicochemical analyses. The results showed WQI values ranging from 157.7 to 472.7 and an average of 279.4, with a total absence of water of excellent or good quality, and about 62.5% of the groundwater samples were of very poor quality for consumption. Nitrate concentrations ranged from 1 to 270 mg/L with an average of 64 mg/L, and 56.7% had values above the World Health Organization safety level of 50 mg/L. The NPI showed that 78.3% of the sampled sites showed very high pollution as a result of intense anthropogenic activities. High contamination is observed in the north and east of the region for arboriculture, grapes, maize, and vegetables as opposed to cereals. The health risk associated with nitrates, based on oral exposure, was much higher than dermal contact. The total risk quotient for both pathways was 0.02 to 6.58, 0.02 to 6.12, 0.06 to 17.06, and 0.05 to 13.35 for women, men, children, and infants, respectively. A total of 65, 63.3, 82.0, and 78.3% of groundwater samples presented a non-cancer health risk for women, men, children, and infants, respectively. Therefore, this study can help identify contaminated areas in order to track corrective safety measures to control groundwater quality in the region and improve sanitary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Raw data are available upon request.

References

  • Aboutayeb, R., Koulali, Y., Madar, A., & Sbia, A. (2013). Cartographie et analyse de la distribution des élevages avicoles dans la région Chaouia-Ouardigha au Maroc. ScienceLib Editions Mersenne, 5, 130518.

    Google Scholar 

  • Adimalla, N. (2020). Controlling factors and mechanism of groundwater quality variation in semiarid region of South India: An approach of water quality index (WQI) and health risk assessment (HRA). Environmental Geochemistry and Health, 42, 1725–1752. https://doi.org/10.1007/s10653-019-00374-8

    Article  CAS  Google Scholar 

  • Adimalla, N., & Qian, H. (2020). Geospatial Distribution and Potential Noncarcinogenic Health Risk Assessment of Nitrate Contaminated Groundwater in Southern India: A Case Study. Archives of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00244-020-00762-7

    Article  Google Scholar 

  • Alighardashi, A., & Mehrani, M. J. (2017). Survey and zoning of nitrate-contaminated groundwater in Iran. Journal of Materials and Environmental Sciences, 8, 2785–2794.

    Article  CAS  Google Scholar 

  • Amin, M. G. M., Karsten, H. D., Veith, T. L., Beegle, D. B., & Kleinman, P. J. (2018). Conservation dairy farming impact on water quality in a karst watershed in northeastern US. Agricultural Systems, 165, 187–196. https://doi.org/10.1016/j.agsy.2018.06.010

    Article  Google Scholar 

  • Andrade, A. I. A. S. S., & Stigter, T. Y. (2009). Multi-method assessment of nitrate and pesticide contamination in shallow alluvial groundwater as a function of hydrogeological setting and land use. Agricultural Water Management, 96, 1751–1765.

    Article  Google Scholar 

  • APHA. (2012). Standard methods for the examination of water and wastewater (22nd ed.). American Public Health Association.

    Google Scholar 

  • Arauzo, M. (2017). Vulnerability of groundwater resources to nitrate pollution: a simple and effective procedure for delimiting Nitrate Vulnerable Zones. Science of the Total Environment, 575, 799–812.

    Article  CAS  Google Scholar 

  • Aslani, H., Zarei, M., Taghipour, H., Khashabi, E., Ghanbari, H., & Ejlali, A. (2019). Monitoring, mapping and health risk assessment of fluoride in drinking water supplies in rural areas of Maku and Poldasht. Iran. Environ. Geochem. Health, 41, 2281–2294.

    Article  CAS  Google Scholar 

  • Bahrami, M., Zarei, A. R., & Rostami, F. (2020). Temporal and spatial assessment of groundwater contamination with nitrate by nitrate pollution index (NPI) and GIS (case study: Fasarud Plain, southern Iran). Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00546-x

    Article  Google Scholar 

  • Baki, S., Hilali, M., Kacimi, I., Kassou, N., Nouiyti, N., & Bahassi, A. (2017). Assessment of Groundwater Intrinsic Vulnerability to Pollution in the Pre-Saharan Areas - The Case of the Tafilalet Plain (Southeast Morocco). Procedia Earth and Planetary Science, 17, 590–593. https://doi.org/10.1016/j.proeps.2016.12.151

    Article  Google Scholar 

  • Balamurugan, P., Kumar, P. S., & Shanka, K. (2020). Dataset on the suitability of groundwater for drinking and irrigation purposes in the Sarabanga River region, Tamil Nadu. India. Data Brief., 29, 105255. https://doi.org/10.1016/j.dib.2020.105255

    Article  CAS  Google Scholar 

  • Balamurugan, P., Shankar, K., & Kirubakaran, M. (2020). Evaluation of drinking and irrigation suitability of groundwater with special emphasizing the health risk posed by nitrate contamination using nitrate pollution index (NPI) and human health risk assessment (HHRA). Human and Ecological Risk Assessment an International Journal. https://doi.org/10.1080/10807039.2020.1833300

    Article  Google Scholar 

  • Barakat, A. (2020). Groundwater NO3 concentration and its potential health effects in Beni Moussa perimeter (Tadla plain, Morocco). Geoenviron Disasters, 7, 14. https://doi.org/10.1186/s40677-020-00149-9

    Article  Google Scholar 

  • Barakat, A., Mouhtarim, G., Saji, R., & Touhami, F. (2019). Health risk assessment of nitrates in the groundwater of Beni Amir irrigated perimeter. Tadla Plain, Morocco, Human and Ecological Risk Assessment: An International Journal, 26(7), 1864–1878. https://doi.org/10.1080/10807039.2019.1613631

    Article  CAS  Google Scholar 

  • Benamar, A., Mahjoubi, F. Z., Kzaiber, F., & Oussama, A. (2019). Evaluation of water quality of Oum Er Rbia River (Morocco) using water quality index method. Journal of Applied Surfaces and Interfaces, 5, 1–3.

    Google Scholar 

  • Berdai H, Soudi B, Bellouti A (2004) Contribution à l’étude de la pollution nitrique deseaux souterraines en zones irriguées : Cas du Tadla. Revue H.T. E, 128, 65 – 87.

  • Bian, Z., Inyang, H. I., Daniels, J. L., Otto, F., & Struthers, S. (2010). Environmental issues from coal mining and their solutions. Mining Science and Technology, 20, 215–223.

    Google Scholar 

  • Bień, J. D., ter Meer, J., Rulkens, W. H., & Rijnaarts, H. H. (2005). A GIS-based approach for the long-term prediction of human health risks at contaminated sites. Environmental Modeling and Assessment, 9(4), 221–226. https://doi.org/10.1007/s10666-005-0909-z

    Article  Google Scholar 

  • Bordalo, A. A., Teixeira, R., & Wiebe, W. J. (2006). A water quality index applied to an international shared river basin: The case of the Douro River. Environ. Manag., 38, 910–920.

    Article  Google Scholar 

  • Brindha, K., Schneider, M. (2019). Chapter 13- Impact of urbanization on groundwater quality. in Senapathi, V., Viswanathan, P.M. and Chung, S.Y.(Eds). GIS and geostatistical techniques for groundwater science, https://doi.org/10.1016/b978-0-12-815413-7.00013-4

  • Bronowicka-Mielniczuk, U., Mielniczuk, J., Obroślak, R., & Przystupa, W. (2019). A Comparison of Some Interpolation Techniques for Determining Spatial Distribution of Nitrogen Compounds in Groundwater. International Journal of Environmental Research, 13, 679–687.

    Article  CAS  Google Scholar 

  • Chafouq, D., El Mandour, A., Elgettafi, M., Himi, M., Chouikri, I., & Casas, A. (2018). Hydrochemical and isotopic characterization of groundwater in the Ghis-Nekor plain (northern Morocco). Journal of African Earth Sciences., 139, 1–13. https://doi.org/10.1016/j.jafrearsci.2017.11.007

    Article  CAS  Google Scholar 

  • Chen, J., Wu, H., Qian, H., & Gao, Y. (2017). Assessing nitrate and fluoride contaminants in drinking water and their health risk of rural residents living in a semiarid region of Northwest China. Exposure and Health., 9, 1–13. https://doi.org/10.1007/s12403-016-0231-9

    Article  CAS  Google Scholar 

  • Chenini, I., Ben Mammou, A., Turki, M. M., & Mercier, E. (2008). Ground water resources in Maknassy Basin (central Tunisia): Hydrological data analysis and water budgeting. Geosciences Journal, 12, 385–399. https://doi.org/10.1007/s12303-008-0038-1

    Article  CAS  Google Scholar 

  • Domenico, P. A., & Schwartz, F. W. (1990). Physical and Chemical Hydrogeology (p. 824). Wiley.

    Google Scholar 

  • El Mountassir, O., Bahir, M., Ouazar, D., Ouhamdouch, S., Chehbouni, A., & Ouarani, M. (2020). The use of GIS and water quality index to assess groundwater quality of Krimat aquifer (Essaouira; Morocco). SN Appl. Sci., 2, 871. https://doi.org/10.1007/s42452-020-2653-z

    Article  CAS  Google Scholar 

  • Elumalai, V., Brindha, K., Sithole, B., & Lakshmanan, E. (2017). Spatial interpolation methods and geostatistics for mapping groundwater contamination in a coastal area. Environmental Science and Pollution Research, 24, 11601–11617. https://doi.org/10.1007/s11356-017-8681-6

    Article  CAS  Google Scholar 

  • Esmaeili, A., Moore, F., & Keshavarzi, B. (2014). Nitrate contamination in irrigation groundwater, Isfahan. Iran. Environ Earth Sci, 72, 2511–2522. https://doi.org/10.1007/s12665-014-3159-z

    Article  CAS  Google Scholar 

  • Ghaderpoori, M., Paydar, M., Zarei, A., Alidadi, H., Najafpoor, A. A., Gohary, A., & Shams, M. (2018). Health risk assessment of fluoride in water distribution network of Mashhad Iran. Human and Ecological Risk Assessment: an International Journal, 25, 851–862.

    Article  Google Scholar 

  • Gholamhoseini, M., AghaAlikhani, M., Modarres Sanavy, S. A. M., & Mirlatifi, S. M. (2013). Interactions of irrigation, weed and nitrogen on corn yield, nitrogen use efficiency and nitrate leaching. Agricultural Water Management, 126, 9–18. https://doi.org/10.1016/j.agwat.2013.05.002

    Article  Google Scholar 

  • Giri, S., & Singh, A. K. (2014). Risk assessment, statistical source identification and seasonal fluctuation of dissolved metals in the Subarnarekha River. India. J. Hazard. Mater., 265, 305–314.

    Article  CAS  Google Scholar 

  • Haftbaradaran, S., Khoshgoftarmanesh, A. H., & Malakouti, M. J. (2018). Assessment, mapping, and management of health risk from nitrate accumulation in onion for Iranian population. Ecotoxicology and Environmental Safety, 161, 777–784. https://doi.org/10.1016/j.ecoenv.2018.06.016

    Article  CAS  Google Scholar 

  • HCP (Haut Commissariat au Plan) (2015) Note de présentation des premiers résultats du Recensement Général de la Population et de l'Habitat 2014

  • HCP (Haut Commissariat au Plan) (2016) Annuaire statistique 2016. Région de Casablanca-Settat.

  • He, J., Ma, J., Zhao, W., & Sun, S. (2015). Groundwater evolution and recharge determination of the Quaternary aquifer in the Shule River basin. Northwest China. Hydrogeol J, 23(1745), 1759.

    Google Scholar 

  • Heiß, L., Bouchaou, L., Tadoumant, S., & Reichert, B. (2020). Index-based groundwater vulnerability and water quality assessment in the arid region of Tata city (Morocco). Groundwater for Sustainable Development. https://doi.org/10.1016/j.gsd.2020.100344

    Article  Google Scholar 

  • Isiuku, B. O., & Enyoh, C. E. (2020). Pollution and health risks assessment of nitrate and phosphate concentrations in water bodies in South Eastern. Nigeria. Environmental Advances, 2, 100018.

    Article  Google Scholar 

  • Kazakis, N., & Voudouris, K. S. (2015). Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters. Journal of Hydrology, 525, 13–25.

    Article  CAS  Google Scholar 

  • Khan, R., & Jhariya, D. C. (2017). Groundwater quality assessment for drinking purpose in Raipur city, Chhattisgarh using water quality index and geographic information system. Journal of the Geological Society of India, 90, 69–76. https://doi.org/10.1007/s12594-017-0665-0

    Article  CAS  Google Scholar 

  • Knobeloch, L., Salna, B., Hogan, A., Postle, J., & Anderson, H. (2000). Blue babies and nitrate-contaminated well water. Environmental Health Perspectives, 108(7), 675–678.

    Article  CAS  Google Scholar 

  • Kumar, D., Singh, A., Jha, R. K., Sahoo, B. B., Sahoo, S. K., & Jha, V. (2019). Source characterization and human health risk assessment of nitrate in groundwater of middle Gangetic Plain. India. Arabian J Geosci, 12, 339.

    Article  Google Scholar 

  • Li, P., Li, X., Meng, X., Mengna, L., & Yuting, Z. (2016). Appraising groundwater quality and health risks from contamination in a semiarid region of Northwest China. Expo Health, 8, 361–379.

    Article  CAS  Google Scholar 

  • Li, P., He, S., He, X., & Tian, R. (2017). Seasonal hydrochemical characterization and groundwater quality delineation based on matter element extension analysis in a paper wastewater irrigation area, Northwest China. Expo Health, 10, 241–258.

    Article  Google Scholar 

  • Li, W., Lei, Q., Yen, H., Wollheim, W. M., Zhai, L., Hu, W., & Liu, H. (2020). The overlooked role of diffuse household livestock production in nitrogen pollution at the watershed scale. Journal of Cleaner Production, 272, 122758. https://doi.org/10.1016/j.jclepro.2020.122758

    Article  CAS  Google Scholar 

  • Liu, A., Ming, J., & Ankumah, R. O. (2005). Nitrate contamination in private wells in rural Alabama. United States. Sci. Total Environ., 346, 112–120.

    Article  CAS  Google Scholar 

  • Liu, J., Gao, M., Jin, D., Wang, T., & Yang, J. (2019). Assessment of groundwater quality and human health risk in the aeolian-sand area of Yulin city, Northwest China. Expo Health, 12, 671–680. https://doi.org/10.1007/s12403-019-00326-8

    Article  Google Scholar 

  • Liu, X., Wang, X., Zhang, L., Fan, W., Yang, C., Li, E., & Wang, Z. (2020). Impact of land use on shallow groundwater quality characteristics associated with human health risks in a typical agricultural area in Central China. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-10492-x

    Article  Google Scholar 

  • Liu J, Jiang LH, Zhang CJ, Li P, Zhao T K (2017) Nitrate-nitrogen contamination in groundwater: Spatiotemporal variation and driving factors under cropland in Shandong Province, China. In IOP conference series: Earth and environmental science, 82, 012059

  • Maila, Y. A., & EI-Nahal I, Al-Agha MR,. (2004). Seasonal variations and mechanisms of groundwater nitrate pollution in the Gaza Strip. Environmental Geology, 47, 84–90.

    Article  CAS  Google Scholar 

  • Marzouk, S. H. (2018). Influences of limestone stone quarries on groundwater quality. International Journal of Hum Capital Urban Management, 3, 315–324.

    Google Scholar 

  • MEMDD (Ministère de l’Energie, des Mines et du Développement Durable) (2018) Etude relative à la surveillance de la qualité de l’air. Rapport régional sur la qualité de l’air – région Casablanca-Settat. Marché n° 32/DPR/2017

  • Mencio, A., Mas-Pla, J., Otero, N., & Soler, A. (2011). Nitrate as a tracer of groundwater flow in a fractured multi-layered aquifer. Hydrological Sciences Journal, 56, 108–122.

    Article  CAS  Google Scholar 

  • Mohammadi, A. A., Zarei, A., Esmaeilzadeh, M., Taghavi, M., Yousefi, M., Yousefi, Z., Sedighi, F., & Javan, S. (2020). Assessment of heavy metal pollution and human health risks assessment in soils around an industrial zone in Neyshabur. Iran. Biol. Trace Elem. Res., 195, 343–352.

    Article  CAS  Google Scholar 

  • Nawale, V. P., Malpe, D. B., Marghade, D., & Yenkie, R. (2021). Non-carcinogenic health risk assessment with source identification of nitrate and fluoride polluted groundwater of Wardha sub-basin, central India. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2020.111548

    Article  Google Scholar 

  • Obeidat M, Awawdeh M, Abu Al-Rub F, Al-Ajlouni A (2012) An Innovative Nitrate Pollution Index and Multivariate Statistical Investigations of Groundwater Chemical Quality of Umm Rijam Aquifer (B4), North Yarmouk River Basin, Jordan. In: Vouddouris K, Voutsa D. Water Quality Monitoring and Assessment. Croatia: InTech https://doi.org/10.5772/32436

  • Oluwoye, I., Dlugogorski, B. Z., Gore, J., Oskierski, H. C., & Altarawneh, M. (2017). Atmospheric emission of NO x from mining explosives: A critical review. Atmospheric Environment, 167, 81–96. https://doi.org/10.1016/j.atmosenv.2017.08.006

    Article  CAS  Google Scholar 

  • Qasemi, M., Farhang, M., Morovati, M., Mahmoudi, M., Ebrahimi, S., Abedi, A., Bagheri, J., Zarei, A., Bazeli, J., Afsharnia, M., Ghalehaskar, S., & Ghaderpoury, A. (2020). Investigation of potential human health risks from fluoride and nitrate via water consumption in Sabzevar. Iran, International Journal of Environmental Analytical Chemistry, 10, 1–12. https://doi.org/10.1080/03067319.2020.1720668

    Article  CAS  Google Scholar 

  • Qian, H., Chen, J., & Howard, K. W. (2020). Assessing groundwater pollution and potential remediation processes in a multi-layer aquifer system. Environmental Pollution, 263, 114669. https://doi.org/10.1016/j.envpol.2020.114669

    Article  CAS  Google Scholar 

  • Rabeiy, R. E. S. (2018). Assessment and modeling of groundwater quality using WQI and GIS in Upper Egypt area. Environmental Science and Pollution Research, 25, 30808–30817. https://doi.org/10.1007/s11356-017-8617-1

    Article  CAS  Google Scholar 

  • Ramakrishnaiah, C., Sadashivaiah, C., & Ranganna, G. (2009). Assessment of water quality index for the groundwater in Tumkur Taluk, Karnataka State, India. Journal of Chemistry, 6, 523–530.

    CAS  Google Scholar 

  • Ray SS, Gusain R, Kumar N (2020) Classification of water contaminants. Carbon Nanomaterial-Based Adsorbents for Water Purification, Pages 11–36. https://doi.org/10.1016/B978-0-12-821959

  • Re, V., Sacchi, E., Mas-Pla, J., Menció, A., & El Amrani, N. (2014). Identifying the effects of human pressure on groundwater quality to support water management strategies in coastal regions: A multi-tracer and statistical approach (Bou-Areg region, Morocco). Science of the Total Environment, 500–501, 211–223. https://doi.org/10.1016/j.scitotenv.2014.08.115

    Article  CAS  Google Scholar 

  • Rodier J, Legube B, Merlet N, Brunet R (1996) L’analyse de l’eau, eaux naturelles, eaux résiduaires, eau de mer (9ème éd.). Paris: Dunod.

  • Rodier J (1984) L’analyse de l’eau, eaux naturelles, eaux résiduaires, eau de mer (7ème éd.). Paris: Dunod.

  • Rutkoviene, V., Kusta, A., & Gesoniene, L. (2005). Environmental impact on nitrate levels in the water of shallow wells. Polish Journal of Environmental Studies, 14, 631–637.

    Google Scholar 

  • Sacchi, E., Acutis, M., Bartoli, M., Brenna, S., Delconte, C. A., Laini, A., & Pennisi, M. (2013). Origin and fate of nitrates in grounwater from the central Po plain: Insights from isotopic investigations. Applied Geochemistry, 34, 164–180.

    Article  CAS  Google Scholar 

  • Sadeq, M., Christine, L. M., Benaissa, A., Cherkaoui, I., ElAouad, R., & Idrissi, L. (2008). Drinking water nitrate and prevalence of methemoglobinemia among infants and children aged 1–7 years in Moroccan areas. International Journal of Hygiene and Environmental Health, 211, 546–554. https://doi.org/10.1016/j.ijheh.2007.09.009

    Article  CAS  Google Scholar 

  • Sánchez, E., Colmenarejo, M. F., Vicente, J., Rubio, A., García, M. G., Travieso, L., & Borja, R. (2007). Use of the water quality index and dissolved oxygen deficit as simple indicators of basins pollution. Ecological Indicators, 7, 315–328.

    Article  Google Scholar 

  • Sebilo, M., Mayer, B., Nicolardot, B., Pinay, G., & Mariotti, A. (2013). Long-term fate of nitrate fertilizer in agricultural soils. Proceedings of the National Academy of Sciences, 110, 18185–18189.

    Article  CAS  Google Scholar 

  • Sehlaoui, H., Hassikou, R., Moussadek, R., Zouahri, A., Douaik, A., Iiach, H., Ghanimi, A., & Dakak, H. (2020). Evaluation of water quality for agricultural suitability in the Benslimane region. Morocco. Environ Monit Assess, 192, 587. https://doi.org/10.1007/s10661-020-08530-9

    Article  CAS  Google Scholar 

  • Shamsuddin, A. S., Ismail, S. N. S., Abidin, E. Z., Bin, H. Y., & Juahir, H. (2016). Contamination of Nitrate in Groundwater and Evaluation of Health Risk in Bachok, Kelantan: A Cross-Sectional Study. American Journal of Applied Sciences, 13, 80–90. https://doi.org/10.3844/ajassp.2016.80.90

    Article  CAS  Google Scholar 

  • Singh, K. P., Singh, V. K., Malik, A., & Basant, N. (2006). Distribution of nitrogen species in groundwater aquifers of an industrial area in alluvial Indo-Gangetic Plains—a case study. Environmental Geochemistry and Health, 28, 47385.

    Article  Google Scholar 

  • Skold, A. C. D., & Klein, R. (2011). Methemoglobinemia: Pathogenesis, diagnosis, and management. Southern Medical Journal, 104(11), 757–761.

    Article  Google Scholar 

  • Spalding, R. F., & Exner, M. E. (1993). Occurrence of nitrate in groundwater- a review. Journal of Environmental Quality, 22, 392–402.

    Article  CAS  Google Scholar 

  • Subba Rao, N., Marghade, D., Dinakar, A., Chandana, I., Sunitha, B., Ravindra, B., & Balaji, T. (2017). Geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh. India. Environ. Earth Sci., 76, 747.

    Article  Google Scholar 

  • Tahri, N., Zidane, L., El Yacoubi, H., Fadli, M., Rochdi, A., & Douira, A. (2011). Contribution à l’étude de la biodiversité de la région de BenSlimane (Ouest marocain): Catalogue floristique des plantes vasculaires. Journal of Animal and Plant Sciences, 12, 1632–1652.

    Google Scholar 

  • Thu, T. N., Huu, H. N., Wenshan, G., Hong, Q. N., Chinh, L., Kinh, B. D., Yiwen, L., & Xinbo, Z. (2020). New approach of water quantity vulnerability assessment using satellite images and GIS-based model: An application to a case study in Vietnam. Science of the Total Environment, 737, 139784.

    Article  Google Scholar 

  • Tian, H., Liang, X., Gong, Y., Qi, L., Liu, Q., Kang, Z., & Jin, H. (2020). Health Risk Assessment of Nitrate Pollution in Shallow Groundwater: A Case Study in China. Polish Journal of Environmental Studies, 29(1), 827–839.

    Article  Google Scholar 

  • Uddin, M. S., & Kurosawa, K. (2014). Effects of peat and water quality parameters on groundwater arsenic contamination in Bangladesh. Water Environment Journal, 28, 165–172.

    Article  CAS  Google Scholar 

  • USEPA (Environmental Protection Agency). (2004). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. US Environmental Protection Agency.

  • USEPA (US Environmental Protection Agency) (1989) Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A). Washington DC: Office of Emergency and Remedial Response.

  • Varol, S., & Davraz, A. (2015). Evaluation of the groundwater quality with WQI (Water Quality Index) and multivariate analysis: A case study of the Tefenni plain (Burdur/ Turkey). Environment and Earth Science, 73, 1725–1744.

    Article  CAS  Google Scholar 

  • Verma, D. K., Bhunia, G. S., Shit, P. K., & Tiwari, A. K. (2018). Assessment of groundwater quality of the central Gangetic Plain area of India using geospatial and WQI Techniques. Journal of the Geological Society of India, 92, 743–752. https://doi.org/10.1007/s12594-018-1097-1

    Article  CAS  Google Scholar 

  • Wagh, V. M., Panaskar, D. B., Mukate, S. V., Aamalawar, M. L., & Sahu, U. L. (2019). Nitrate associated health risks from groundwater of Kadava River Basin Nashik, Maharashtra, India, Human and Ecological Risk Assessment: An. International Journal, 26, 654–672. https://doi.org/10.1080/10807039.2018.1528861

    Article  CAS  Google Scholar 

  • Wakida, F. T., & Lerner, D. N. (2005). Non-agricultural sources of groundwater nitrate: A review and case study. Water Research, 39, 3–16.

    Article  CAS  Google Scholar 

  • Ward, M. H., Jones, R. R., Brender, J. D., De Kok, T. M., Weyer, P. J., Nolan, B. T., Villanueva, M. C., & Breda, S. G. V. (2018). Drinking water nitrate and human health: An updated review. International Journal of Environmental Research and Public Health, 15, 1557. https://doi.org/10.3390/ijerph15071557

    Article  CAS  Google Scholar 

  • Wen, X., Lu, J., Wu, J., Lin, Y., & Luo, Y. (2019). Influence of coastal groundwater salinization on the distribution and risks of heavy metals. Science of the Total Environment, 652, 267–277. https://doi.org/10.1016/j.scitotenv.2018.10.250

    Article  CAS  Google Scholar 

  • WHO (World Health Organisation). (2011). Guidelines for drinking water quality (4th ed.). Switzerland.

    Google Scholar 

  • WHO (World Health Organization) (1993) Guidelines for drinking water quality, vol. 1, Recommendations (2nd edn.). WHO, Geneva.

  • WHO (World Health Organization) (2017) Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: World Health Organization Licence: CC BY-NC-SA 3.0 IGO

  • Zhai, Y., Zhao, X., Teng, Y., Li, X., Zhang, J., Wu, J., & Zuo, R. (2017). Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China. Ecotox Environ Safe, 137, 130–142.

    Article  CAS  Google Scholar 

  • Zhang, Y., Wu, J., & Xu,. (2018). Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region. Northwest China. Environ. Earth Sci., 77, 273.

    Article  Google Scholar 

  • Zhang, F., Huang, G., Hou, Q., Liu, C., Zhang, Y., & Zhang, Q. (2019). Groundwater quality in the Pearl River Delta after the rapid expansion of industrialization and urbanization: Distributions, main impact indicators, and driving forces. Journal of Hydrology, 577, 124004. https://doi.org/10.1016/j.jhydrol.2019.124004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Provincial Direction of Agriculture, Benslimane, for its support during the sampling period. The authors are grateful to all the personnel of URECRN-INRA in Rabat for their help.

Funding

Funding was received from National Institute of Agricultural Research for field work and laboratory analyses.

Author information

Authors and Affiliations

Authors

Contributions

HS involved in conceptualization, methodology, software, and writing–original draft. RH involved in conceptualization and supervision. HD involved in data curation and supervision. AZ involved in supervision and funding acquisition. SELH involved in formal analysis and review. HI involved in software and review. AG involved in data curation. AD involved in conceptualization, methodology, software, formal analysis, review, editing, and supervision.

Corresponding author

Correspondence to Habiba Sehlaoui.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Human and animal rights

No animal species were used for this research.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

The participants have consented to the submission of the case report to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sehlaoui, H., Hassikou, R., Dakak, H. et al. Nitrate contamination and associated health risks of the Benslimane groundwater, Morocco. Environ Geochem Health 44, 4343–4358 (2022). https://doi.org/10.1007/s10653-021-01186-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01186-5

Keywords

Navigation