Skip to main content

Advertisement

Log in

Long-term nonlinear relationship between PM2.5 and ten leading causes of death

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Air pollution has become a major concern worldwide. Many epidemiological studies have proved relationships between fine particulate matter (PM2.5) and various diseases, but most studies only use short-term and models for specific groups to derive relationships with acute diseases. This makes it difficult to understand long-term exposure, nonlinear relationships, and spatial-temporal health risks regarding chronic diseases. Therefore, this study proposed to analyze and map PM2.5 exceedance probability from long-term spatial-temporal monitoring data using radial basis function estimation. We then constructed and compared multiple linear regression and generalized additive models to investigate linear and nonlinear relationships between long-term average PM2.5 concentration, PM2.5 potential probability for exceeding the standard, and standardized mortality for the top ten causes of death in all towns and villages in Taiwan nationally from 2010 to 2017. Linear models indicate that increasing PM2.5 concentration increased malignant neoplasm, pneumonia, and chronic lower respiratory disease mortalities; chronic liver diseases; and cirrhosis; whereas heart diseases and esophagus cancer mortality decreased. For the nonlinear model results, it can be found that there were also significant nonlinear relationships between PM2.5 concentration and malignant mortalities for neoplasm, heart disease, diabetes; and trachea, bronchus, lung, liver, intrahepatic bile duct, and esophagus cancer. Thus, long-term exposure to PM2.5 may be a significant risk factor for multiple acute and chronic diseases. Results from this study can be directly applied worldwide to provide air quality and health management references for governments, and important information on long-term health risks for local residents in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The original data used in this study is open access from Taiwan Environmental Protection Administration (TWEPA) Taiwan Air Quality Monitoring Network (https://airtw.epa.gov.tw/ENG/default.aspx).

References

  • Ahmad, O. B., Boschi Pinto, C., Lopez, A. D., Murray, C. J., Lozano, R., & Inoue, M. (2001). Age standardization of rates: a new WHO standard. Geneva: World Health Organization, 9(10).

  • Apte, J. S., Marshall, J. D., Cohen, A. J., & Brauer, M. (2015). Addressing global mortality from ambient PM2.5. Environmental Science & Technology, 49(13), 8057–8066.

    Article  CAS  Google Scholar 

  • Beelen, R., Hoek, G., van Den Brandt, P. A., Goldbohm, R. A., Fischer, P., Schouten, L. J., & Brunekreef, B. (2007). Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR study). Environmental Health Perspectives, 116(2), 196–202.

    Article  Google Scholar 

  • Cai, Y., Zhang, B., Ke, W., Feng, B., Lin, H., Xiao, J., & Liu, T. (2016). Associations of short-term and long-term exposure to ambient air pollutants with hypertension. Hypertension, 68(1), 62–70.

    Article  CAS  Google Scholar 

  • Chan, C. C., Chuang, K. J., Chien, L. C., Chen, W. J., & Chang, W. T. (2006). Urban air pollution and emergency admissions for cerebrovascular diseases in Taipei Taiwan. European Heart Journal, 27(10), 1238–1244.

    Article  CAS  Google Scholar 

  • Chen, C., Li, Y., Zhao, N., Guo, B., & Mou, N. (2018). Least squares compactly supported radial basis function for digital terrain model interpolation from airborne lidar point clouds. Remote Sensing, 10(4), 587.

    Article  Google Scholar 

  • Cheriyan, D., Hyun, K. Y., Jaegoo, H., & Choi, J. H. (2020). Assessing the distributional characteristics of PM10, PM2.5, and PM1 exposure profile produced and propagated from a construction activity. Journal of Cleaner Production, 276, 124335. https://doi.org/10.1016/j.jclepro.2020.124335

    Article  CAS  Google Scholar 

  • Cohen, A. J., Anderson, H. R., Ostro, B., Pandey, K. D., Krzyzanowski, M., Künzli, N., Samet, J. M. (2004). Urban air pollution. In M. Ezzati, A. D. Lopez, A. Rodgers, & C. J. L. Murray (Eds.), Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors (Vol. 2, pp. 1353–1433).

  • Darby, S. E. (1999). Effect of riparian vegetation on flow resistance and flood potential. Journal of Hydraulic Engineering, 125(5), 443–454. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:5(443)

    Article  Google Scholar 

  • Di, Q., Dai, L., Wang, Y., Zanobetti, A., Choirat, C., Schwartz, J. D., & Dominici, F. (2017). Association of short-term exposure to air pollution with mortality in older adults. The Journal of the American Medical Association, 318(24), 2446–2456.

    Article  CAS  Google Scholar 

  • Ding, Q., Wang, Y., & Zhuang, D. (2018). Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions. Journal of Environmental Management, 212, 23–31. https://doi.org/10.1016/j.jenvman.2018.01.074

    Article  CAS  Google Scholar 

  • Dominici, F., Peng, R. D., Bell, M. L., Pham, L., McDermott, A., Zeger, S. L., & Samet, J. M. (2006). Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. The Journal of the American Medical Association, 295(10), 1127–1134.

    Article  CAS  Google Scholar 

  • Hardy, R. L. (1971). Multiquadric equations of topography and other irregular surfaces. Journal of Geophysical Research, 76(8), 1905–1915. https://doi.org/10.1029/JB076i008p01905

    Article  Google Scholar 

  • Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models, vol. 43 Boca Raton. FL: CRC Press.

  • Hoek, G., Brunekreef, B., Goldbohm, S., Fischer, P., & van den Brandt, P. A. (2002). Association between mortality and indicators of traffic-related air pollution in the Netherlands: A cohort study. The Lancet, 360(9341), 1203–1209.

    Article  Google Scholar 

  • Huang, F., Pan, B., Wu, J., Chen, E., & Chen, L. (2017). Relationship between exposure to PM2.5 and lung cancer incidence and mortality: A meta-analysis. Oncotarget, 8(26), 43322.

    Article  Google Scholar 

  • Kim, J. W., Park, S., Lim, C. W., Lee, K., & Kim, B. (2014). The role of air pollutants in initiating liver disease. Toxicological Research, 30(2), 65.

    Article  Google Scholar 

  • Kim, K. H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143. https://doi.org/10.1016/j.envint.2014.10.005

    Article  CAS  Google Scholar 

  • Kloog, I., Ridgway, B., Koutrakis, P., Coull, B. A., & Schwartz, J. D. (2013). Long- and short-term exposure to PM25 and mortality: using novel exposure models. Epidemiology (cambridge, Mass.), 24(4), 555–561. https://doi.org/10.1097/EDE.0b013e318294beaa

    Article  Google Scholar 

  • Liang, F., Xiao, Q., Gu, D., Xu, M., Tian, L., Guo, Q., & Liu, Y. (2018). Satellite-based short- and long-term exposure to PM2.5 and adult mortality in urban Beijing China. Environmental Pollution, 242, 492–499. https://doi.org/10.1016/j.envpol.2018.06.097

    Article  CAS  Google Scholar 

  • Lin, Y. C., Shih, H. S., Lai, C. Y., & Tai, J. K. (2020). Investigating a potential map of PM2.5 air pollution and risk for tourist attractions in Hsinchu County Taiwan. International Journal of Environmental Research and Public Health, 17(22), 8691.

    Article  Google Scholar 

  • Miller, K. A., Siscovick, D. S., Sheppard, L., Shepherd, K., Sullivan, J. H., Anderson, G. L., & Kaufman, J. D. (2007). Long-term exposure to air pollution and incidence of cardiovascular events in Women. New England Journal of Medicine, 356(5), 447–458. https://doi.org/10.1056/NEJMoa054409

    Article  CAS  Google Scholar 

  • Næss, Ø., Nafstad, P., Aamodt, G., Claussen, B., & Rosland, P. (2006). Relation between concentration of air pollution and cause-specific mortality: Four-year exposures to nitrogen dioxide and particulate matter pollutants in 470 neighborhoods in Oslo Norway. American Journal of Epidemiology, 165(4), 435–443.

    Article  Google Scholar 

  • Pope, C. A., III., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. The Journal of the American Medical Association, 287(9), 1132–1141.

    Article  CAS  Google Scholar 

  • Pope, C. A., III., Burnett, R. T., Turner, M. C., Cohen, A., Krewski, D., Jerrett, M., & Thun, M. J. (2011). Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: Shape of the exposure–response relationships. Environmental Health Perspectives, 119(11), 1616–1621.

    Article  Google Scholar 

  • Pope, C. A., III., Cohen, A. J., & Burnett, R. T. (2018). Cardiovascular disease and fine particulate matter: Lessons and limitations of an integrated exposure–response approach. Circulation Research, 122(12), 1645–1647.

    Article  CAS  Google Scholar 

  • Rana, J. S., Khan, S. S., Lloyd Jones, D. M., & Sidney, S. (2020). Changes in mortality in Top 10 causes of death from 2011 to 2018. Journal of General Internal Medicine. https://doi.org/10.1007/s11606-020-06070-z

    Article  Google Scholar 

  • Ranft, U., Schikowski, T., Sugiri, D., Krutmann, J., & Krämer, U. (2009). Long-term exposure to traffic-related particulate matter impairs cognitive function in the elderly. Environmental Research, 109(8), 1004–1011. https://doi.org/10.1016/j.envres.2009.08.003

    Article  CAS  Google Scholar 

  • Reager, J. T., & Famiglietti, J. S. (2009). Global terrestrial water storage capacity and flood potential using GRACE. Geophysical Research Letters. https://doi.org/10.1029/2009GL040826

    Article  Google Scholar 

  • Rush, B., Wiskar, K., Fruhstorfer, C., Celi, L. A., & Walley, K. R. (2018). The impact of chronic ozone and particulate air pollution on mortality in patients with sepsis across the United States. Journal of Intensive Care Medicine, 35(10), 1002–1007.

    Article  Google Scholar 

  • Schwartz, J., Slater, D., Larson, T. V., Pierson, W. E., & Koenig, J. O. (1993). Particulate air pollution and hospital emergency room. The American Review of Respiratory Disease, 147(4), 826–831.

    Article  CAS  Google Scholar 

  • Seed, H. B., & Idriss, I. M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division, 97(9), 1249–1273. https://doi.org/10.1061/JSFEAQ.0001662

    Article  Google Scholar 

  • Shang, Y., Sun, Z., Cao, J., Wang, X., Zhong, L., Bi, X., & Huang, W. (2013). Systematic review of Chinese studies of short-term exposure to air pollution and daily mortality. Environment International, 54, 100–111. https://doi.org/10.1016/j.envint.2013.01.010

    Article  CAS  Google Scholar 

  • Smolik, M., & Skala, V. (2018). Large scattered data interpolation with radial basis functions and space subdivision. Integrated Computer-Aided Engineering, 25, 49–62. https://doi.org/10.3233/ICA-170556

    Article  Google Scholar 

  • Song, C., He, J., Wu, L., Jin, T., Chen, X., Li, R., & Mao, H. (2017). Health burden attributable to ambient PM2. 5 in China. Environmental Pollution, 223, 575–586.

    Article  CAS  Google Scholar 

  • Straif, K., Cohen, A., & Samet, J. (2013). Air pollution and cancer. IARC Scientific Publications, 161.

  • Teng, Y. C., Kuo, C. L., Chen, C. C., Yeh, Y. H., Kao, J. H., Lin, B. C., & Chan, T. C. (2016). Using government open data to construct a Taiwan online interactive map of disease causes of death (in Chinese). Taiwan Journal of Public Health, 35(5), 553–566. https://doi.org/10.6288/TJPH201635105012

    Article  Google Scholar 

  • Toit, W. D. (2008). Radial basis function interpolation.

  • Turner, M. C., Krewski, D., Pope, C. A., III., Chen, Y., Gapstur, S. M., & Thun, M. J. (2011). Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers. American Journal of Respiratory and Critical Care Medicine, 184(12), 1374–1381.

    Article  Google Scholar 

  • Vineis, P., Forastiere, F., Hoek, G., & Lipsett, M. (2004). Outdoor air pollution and lung cancer: Recent epidemiologic evidence. International Journal of Cancer, 111(5), 647–652.

    Article  CAS  Google Scholar 

  • Weuve, J., Puett, R. C., Schwartz, J., Yanosky, J. D., Laden, F., & Grodstein, F. (2012). Exposure to particulate air pollution and cognitive decline in older women. Archives of Internal Medicine, 172(3), 219–227.

    Article  Google Scholar 

  • World Health Organization. (2013). Health effects of particulate matter. Policy implications for countries in eastern Europe, Caucasus and central Asia. Copenhagen: WHO Regional Office for Europe.

  • World Health Organization. (2020). The top 10 causes of death. WHO's Global Health Estimates.

  • Wu, Y. C., Lin, Y. C., Yu, H. L., Chen, J. H., Chen, T. F., Sun, Y., & Chen, Y. C. (2015). Association between air pollutants and dementia risk in the elderly. Alzheimer’s and Dementia: Diagnosis, Assessment and Disease Monitoring, 1(2), 220–228. https://doi.org/10.1016/j.dadm.2014.11.015

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Science and Technology (Taiwan): Projects MOST 108-2625-M-008-002, MOST 108-2119-M-008-003, MOST 108-2636-E-008-004, MOST 109-2636-E-008-008 (Young Scholar Fellowship Program), and MOST 108-2638-E-008-001-MY2 (Shackleton Program Grant).

Funding

This study was supported by the Ministry of Science and Technology (Taiwan): Projects MOST 108–2625-M-008–002, MOST 108–2119-M-008–003, MOST 108–2636-E-008–004, MOST 109–2636-E-008–008 (Young Scholar Fellowship Program), and MOST 108–2638-E-008–001-MY2 (Shackleton Program Grant).

Author information

Authors and Affiliations

Authors

Contributions

YCL designed the experiments and funding acquisition, HSS, and CYL collected data, YCL, HSS, and CYL analyzed the data, and YCL and HSS interpreted the results and wrote the manuscript.

Corresponding author

Correspondence to Yuan-Chien Lin.

Ethics declarations

Author information

All the authors are from the Department of Civil Engineering, National Central University, Taiwan.

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval and consent to participate

Not Applicable.

Consent for publication

This manuscript does not contain any individual person’s data in any form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YC., Shih, HS. & Lai, CY. Long-term nonlinear relationship between PM2.5 and ten leading causes of death. Environ Geochem Health 44, 3967–3990 (2022). https://doi.org/10.1007/s10653-021-01136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01136-1

Keywords

Navigation