Skip to main content

Advertisement

Log in

The importance and status of the micronutrient selenium in South Africa: a review

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Selenium (Se) is a vital micronutrient with widespread biological action but leads to toxicity when taken in excessive amounts. The biological benefits of Se are mainly derived from its presence in active sites of selenoproteins such as glutathione peroxidase (GPx). An enzyme whose role is to protect tissues against oxidative stress by catalysing the reduction of peroxidase responsible for various forms of cellular damage. The benefits of Se can be harvested when proper regulations of its intake are used. In South Africa, Se distribution in people's diets and animals are low with socio-economic factors and heterogeneous spread of Se in soil throughout the country playing a significant role. The possible causes of low Se in soils may be influenced by underlying geological material, climatic conditions, and anthropogenic activities. Sedimentary rock formations show higher Se concentrations compared to igneous and metamorphic rock formations. Higher Se concentrations in soils dominates in humid and sub-humid areas of South Africa. Furthermore, atmospheric acid deposition dramatically influences the availability of Se to plants. The studies reviewed in this article have shown that atomic absorption spectroscopy (AAS) is the most utilised analytical technique for total Se concentration determination in environmental samples and there is a lack of speciation data for Se concentrations. Shortcomings in Se studies have been identified, and the future research directions of Se in South Africa have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akahoshi, N., Anan, Y., Hashimoto, Y., Tokoro, N., Mizuno, R., Hayashi, S., et al. (2019). Dietary selenium deficiency or selenomethionine excess drastically alters organ selenium contents without altering the expression of most selenoproteins in mice. Journal of Nutritional Biochemistry, 69, 120–129. https://doi.org/10.1016/j.jnutbio.2019.03.020

    Article  CAS  Google Scholar 

  • Altunay, N., Elik, A., & Kaya, S. (2020). Alcohol-DES based vortex assisted homogenous liquid-liquid microextraction approach for the determination of total selenium in food samples by hydride generation AAS: Insights from theoretical and experimental studies. Talanta. https://doi.org/10.1016/j.talanta.2020.120903

    Article  Google Scholar 

  • Anderson, S. T. G., Robért, R. V. D., & Farrer, H. N. (1994). Determination of total and leachable arsenic and selenium in soils by continuous hydride generation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 9(10), 1107–1110. https://doi.org/10.1039/JA9940901107

    Article  CAS  Google Scholar 

  • Arhin, E., & Zango, M. (2016). Impact of trace elements in the natural environment and public health: A medical geology perspective. Annals of Public Health and Research, 3(4).

  • ASSAf. (2013). Consesus study on improved nutritional assesment of micronutrients. Pretoria: Academy of Science of South Africa (ASSAf).

  • B’Hymer, C., & Caruso, J. A. (2006). Selenium speciation analysis using inductively coupled plasma-mass spectrometry. Journal of Chromatography A, 1114(1), 1–20. https://doi.org/10.1016/j.chroma.2006.02.063

    Article  CAS  Google Scholar 

  • Badenes-Perez, F. R., Gershenzon, J., & Heckel, D. G. (2014). Insect attraction versus plant defense: Young leaves high in glucosinolates stimulate oviposition by a specialist herbivore despite poor larval survival due to high saponin content. PLoS ONE, 9(4), 39–42. https://doi.org/10.1371/journal.pone.0095766

    Article  CAS  Google Scholar 

  • Bellinger, F. P., Raman, A. V., Reeves, M. A., & Berry, J. M. (2010). Regulation and function of selenoproteins in human disease. Biochemical Journal, 422(1), 11–22. https://doi.org/10.1042/BJ20090219

    Article  CAS  Google Scholar 

  • Bishop, D. P., Hare, D. J., Fryer, F., Taudte, R. V., Cardoso, B. R., Cole, N., & Doble, P. A. (2015). Determination of selenium in serum in the presence of gadolinium with ICP-QQQ-MS. The Analyst, 140(8), 2842–2846. https://doi.org/10.1039/c4an02283a

    Article  CAS  Google Scholar 

  • Bolea-Fernandez, E., Balcaen, L., Resano, M., & Vanhaecke, F. (2015). Interference-free determination of ultra-trace concentrations of arsenic and selenium using methyl fluoride as a reaction gas in ICP-MS/MS. Analytical and Bioanalytical Chemistry, 407(3), 919–929. https://doi.org/10.1007/s00216-014-8195-8

    Article  CAS  Google Scholar 

  • Brini, M., Calì, T., Ottolini, D., & Carafoli, E. (2013). Metal ions in Life Sciences Series - 13: Interrelations between essential metal ions and human diseases. (A. Sigel, H. Sigel, & R. Sigel, Eds.) (Volume 13.). New York: Springer. http://www.springer.com/series/8385

  • Buchspies, B., Thormann, L., Mbohwa, C., & Kaltschmitt, M. (2017). Pge production in Southern Africa, part II: Environmental aspects. Minerals, 7(11). https://doi.org/10.3390/min7110225

  • Byers, H. G. (1935). Selenium occurrence in certain soils in the United States, with a discussion of the related topics (Vol. 482).

  • Byers, H. G., Williams, K. T., & Lakin, H. W. (1936). Selenium in Hawaii: And its probable source in the United States. Industrial and Engineering Chemistry, 28(7), 821–823. https://doi.org/10.1021/ie50319a018

    Article  CAS  Google Scholar 

  • Catuneanu, O., Wopfner, H., Eriksson, P. G., Cairncross, B., Rubidge, B. S., Smith, R. M. H., & Hancox, P. J. (2005). The Karoo basins of south-central Africa. Journal of African Earth Sciences, 43(1–3), 211–253. https://doi.org/10.1016/j.jafrearsci.2005.07.007

    Article  Google Scholar 

  • Chen, Q., Wang, Z., Xiong, Y., Zou, X., & Liu, Z. (2010). Comparative study of p38 MAPK signal transduction pathway of peripheral blood mononuclear cells from patients with coal-combustion-type fluorosis with and without high hair selenium levels. International Journal of Hygiene and Environmental Health, 213(5), 381–386. https://doi.org/10.1016/j.ijheh.2010.06.002

    Article  CAS  Google Scholar 

  • Chevalier, M., & Chase, B. M. (2016). Determining the drivers of long-term aridity variability: A Southern African case study. Journal of Quaternary Science, 31(2), 143–151. https://doi.org/10.1002/jqs.2850

    Article  Google Scholar 

  • Choppin, G. ., Liljenzin, J.-O., & Rydberg, J. (2002). Uses of Radioactive Tracer. Radiochemistry and Nuclear Chemistry (Third.). Butterworth-Heinemann. https://doi.org/10.1016/B978-075067463-8/50009-1.

  • Collins, R., Johansson, A. L., Karlberg, T., Markova, N., van den Berg, S., Olesen, K., et al. (2012). Biochemical discrimination between selenium and sulfur 1: A single residue provides selenium specificity to human selenocysteine lyase. PLoS ONE. https://doi.org/10.1371/journal.pone.0030581

    Article  Google Scholar 

  • Combs, G. F. (2015). Biomarkers of selenium status. Nutrients, 7(4), 2209–2236. https://doi.org/10.3390/nu7042209

    Article  CAS  Google Scholar 

  • Cone, J. E., Martin, R., Rio, D. E. L., Davis, J. O. E. N., & Stadtman, T. C. (1976). Chemical characterization of the selenoprotein component of clostridial glycine reductase: Identification of selenocysteine as the organoselenium moiety. In Proceedings of the National Academy of Sciences of the United States of America (Vol. 73, pp. 2659–2663).

  • Courtman, C. (2013). Selenium concentration of maize grain in South Africa and the effect of three selenium sources on the selenium concentration of eggs and egg quality. University of Pretoria.

  • Courtman, C., Van Ryssen, J., & Oelofse, A. (2012). Selenium concentration of maize grain in South Africa and possible factors influencing the concentration. South African Journal of Animal Science. https://doi.org/10.4314/sajas.v42i5.2

    Article  Google Scholar 

  • Cuvardic, M. (2003). Selenium in soil. In Proceedings of Natural Science, Matica Srpska (pp. 23–37). https://doi.org/10.2298/zmspn0304023c

  • Da Silva, E. G., Mataveli, L. R. V., & Zezzi Arruda, M. A. (2013). Speciation analysis of selenium in plankton, Brazil nut and human urine samples by HPLC-ICP-MS. Talanta, 110, 53–55. https://doi.org/10.1016/j.talanta.2013.02.014

    Article  CAS  Google Scholar 

  • Davis, A., & Myburgh, J. G. (2016). Investigation of stillbirths, perinatal mortality and weakness in beef calves with low-selenium whole blood concentrations. Journal of the South African Veterinary Association, 87(1), 1–6. https://doi.org/10.4102/jsava.v87i1.1336

    Article  Google Scholar 

  • De Feudis, M., D’Amato, R., Businelli, D., & Guiducci, M. (2019). Fate of selenium in soil: A case study in a maize (Zea mays L.) field under two irrigation regimes and fertilized with sodium selenite. Science of the Total Environment, 659, 131–139. https://doi.org/10.1016/j.scitotenv.2018.12.200

    Article  CAS  Google Scholar 

  • De Groot, P. A. (2009). Handbook of stable isotopes, Analytical Techniques (Vol. 2). Elsevier.

    Google Scholar 

  • De Smet, S. (2012). Meat, poultry, and fish composition: Strategies for optimizing human intake of essential nutrients. Animal Frontiers, 2(4), 10–16. https://doi.org/10.2527/af.2012-0057

    Article  Google Scholar 

  • Díaz-Alarcón, J. P., Navarro-Alarcón, M., López-García de la Serrana, H., & López-Martínez, M. C. (1996). Determination of selenium in meat products by hydride generation atomic absorption spectrometry: Selenium levels in meat, organ meats, and sausages in Spain. Journal of Agricultural and Food Chemistry, 44(6), 1494–1497. https://doi.org/10.1021/jf950702l

    Article  Google Scholar 

  • Diwadkar-Navsariwala, V., & Diamond, A. M. (2018). The link between selenium and chemoprevention: A case for selenoproteins. The Journal of Nutrition, 134(11), 2899–2902. https://doi.org/10.1093/jn/134.11.2899

    Article  Google Scholar 

  • Donati, G. L., Amais, R. S., & Williams, C. B. (2017). Recent advances in inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 32(7), 1283–1296. https://doi.org/10.1039/c7ja00103g

    Article  CAS  Google Scholar 

  • Dressler, V. L., Antes, F. G., Moreira, C. M., Pozebon, D., & Duarte, F. A. (2011). As, Hg, I, Sb, Se and Sn speciation in body fluids and biological tissues using hyphenated-ICP-MS techniques: A review. International Journal of Mass Spectrometry, 307(1–3), 149–162. https://doi.org/10.1016/j.ijms.2011.01.026

    Article  CAS  Google Scholar 

  • Ellis, D. R., & Salt, D. E. A. (2003). Plants, selenium and human health. Current Opinion in Plant Biology, 6(3), 273–279. https://doi.org/10.1016/S1369-5266(03)00030-X

    Article  CAS  Google Scholar 

  • Erasmus, J., & Faanhof, A. (1983). Blood selenium on sheep in some districts of the northen Orange Free State. Journal of the South African Veterinary Association, 54(3), 187–188.

    CAS  Google Scholar 

  • Esworthy, R. S., Yang, L., Frankel, P. H., & Chu, F. F. (2005). Epithelium-specific glutathione peroxidase, Gpx2, is involved in the prevention of intestinal inflammation in selenium-deficient mice. Journal of Nutrition, 135(4), 740–745. https://doi.org/10.1093/jn/135.4.740

    Article  CAS  Google Scholar 

  • Faber, M., & Wenhold, F. (2007). Nutrition in contemporary South Africa. Water SA, 33(3), 393–400.

    Article  Google Scholar 

  • FAO. (1992). World declaration and plan of action for nutrition. In International Conference on Nutrition (pp. 1–42).

  • FAO/WHO. (1998). Preparation and use of food-base dietary guideline. Geneva.

  • Ferreira, G., & Petzer, I.-M. (2019). Injectable organic and inorganic selenium in dairy cows—effects on milk, blood and somatic cell count levels. Onderstepoort Journal of Veterinary Research, 86(1), 1–8. https://doi.org/10.4102/ojvr.v86i1.1664

    Article  CAS  Google Scholar 

  • Ferreira, S., Junior, J. B. P., Almeida, L. C., Santos, L. B., Lemos, V. A., Novaes, C. G., et al. (2020). Strategies for inorganic speciation analysis employing spectrometric techniques–Review. Microchemical Journal, 153, 104402. https://doi.org/10.1016/j.microc.2019.104402

    Article  CAS  Google Scholar 

  • Fishbein, L. (1983). Environmental selenium and its significance. Toxicological Sciences, 3(5), 411–419. https://doi.org/10.1093/toxsci/3.5.411

    Article  CAS  Google Scholar 

  • Flohe, L., Gunzler, W., & Dhock, H. (1973). Glutathione peroxidase: A selenoenzyme. FEBS Letters, 32(1), 32–34.

    Article  Google Scholar 

  • Floor, G. H., & Román-Ross, G. (2012). Selenium in volcanic environments: A review. Applied Geochemistry, 27(3), 517–531. https://doi.org/10.1016/j.apgeochem.2011.11.010

    Article  CAS  Google Scholar 

  • Fordyce, F. (2013). The natural environment:Selenium toxicity and deficiency-process related. Contribution To Medical Geology Book, 1–92.

  • Ghosh, J. (2004). Rapid induction of apoptosis in prostate cancer cells by selenium: Reversal by metabolites of arachidonate 5-lipoxygenase. Biochemical and Biophysical Research Communications, 315(3), 624–635. https://doi.org/10.1016/j.bbrc.2004.01.100

    Article  CAS  Google Scholar 

  • Girmay, M. E., & Chikobvu, D. (2017). Quantifying South Africa’s sulphur dioxide emission efficiency in coal-powered electricity generation by fitting the three-parameter log-logistic distribution. Journal of Energy in Southern Africa. https://doi.org/10.17159/2413-3051/2017/v28i1a1530

    Article  Google Scholar 

  • Goenaga-Infante, H., Sturgeon, R., Turner, J., Hearn, R., Sargent, M., Maxwell, P., et al. (2008). Total selenium and selenomethionine in pharmaceutical yeast tablets: Assessment of the state of the art of measurement capabilities through international intercomparison CCQM-P86. Analytical and Bioanalytical Chemistry, 390(2), 629–642. https://doi.org/10.1007/s00216-007-1654-8

    Article  CAS  Google Scholar 

  • Goh, K. H., & Lim, T. T. (2004). Geochemistry of inorganic arsenic and selenium in a tropical soil: Effect of reaction time, pH, and competitive anions on arsenic and selenium adsorption. Chemosphere, 55(6), 849–859. https://doi.org/10.1016/j.chemosphere.2003.11.041

    Article  CAS  Google Scholar 

  • Golzadeh, N., Barst, B. D., Basu, N., Baker, J. M., Auger, J. C., & McKinney, M. A. (2020). Evaluating the concentrations of total mercury, methylmercury, selenium, and selenium: Mercury molar ratios in traditional foods of the Bigstone Cree in Alberta Canada. Chemosphere, 250, 126285. https://doi.org/10.1016/j.chemosphere.2020.126285

    Article  CAS  Google Scholar 

  • Gonzalvez, A., Cervera, M. L., Armenta, S., & de la Guardia, M. (2009). A review of non-chromatographic methods for speciation analysis. Analytica Chimica Acta, 636(2), 129–157. https://doi.org/10.1016/j.aca.2009.01.065

    Article  CAS  Google Scholar 

  • Gupta, M., & Gupta, S. (2017). An overview of selenium uptake, metabolism, and toxicity in plants. Frontiers in Plant Science, 7, 1–14. https://doi.org/10.3389/fpls.2016.02074

    Article  Google Scholar 

  • Guzman, M. J. L., Hinojosa Reyes, L., Mizanur Rahman, G. M., & Kingston, H. S. (2009). Simultaneous extraction of arsenic and selenium species from rice products by microwave-assisted enzymatic extraction and analysis by ion chromatography-inductively coupled plasma-mass spectrometry. Journal of Agricultural and Food Chemistry, 57(8), 3005–3013.

    Article  Google Scholar 

  • Habibi, G., & Alizade, Z. (2017). Selenium in lemon balm plants: Productivity, phytotoxicity and drought alleviation. Journal of Plant Nutrition, 40(11), 1557–1568. https://doi.org/10.1080/01904167.2016.1263326

    Article  CAS  Google Scholar 

  • Hajiboland, R., Rahmat, S., Zeinalzadeh, N., Farsad-Akhtar, N., & Hosseinpour-Feizi, M. A. (2019). Senescence is delayed by selenium in oilseed rape plants. Journal of Trace Elements in Medicine and Biology, 55(January), 96–106. https://doi.org/10.1016/j.jtemb.2019.06.005

    Article  CAS  Google Scholar 

  • Hargreaves, M. K., Liu, J., Buchowski, M. S., Patel, K. A., Larson, C. O., Schlundt, D. G., et al. (2014). Plasma selenium biomarkers in low income black and white Americans from the southeastern United States. PLOS ONES ONE, 9(1). https://doi.org/10.1371/journal.pone.0084972

  • Harthoorn, A. M., & Turkstra, J. (1976). The influence of seasonal changes in the dtermination of selenium in liver of varios animals bt neuton acivation analysis and high-resolution gamma spectrometry. Journal of South African Vertinary Association, 47(3), 183–186.

    CAS  Google Scholar 

  • Hattingh, Z., Walsh, C., Veldman, F. J., & Bester, C. (2007). Micronutrient intake of HIV infected women in Mangauang, Free State. South African Journal of Clinical Nutrition, 20(1), 28–36.

    Article  Google Scholar 

  • Hawkesford, M. J., & Zhao, F. J. (2007). Strategies for increasing the selenium content of wheat. Journal of Cereal Science, 46(3), 282–292. https://doi.org/10.1016/j.jcs.2007.02.006

    Article  CAS  Google Scholar 

  • Hefnawy, A. E. G., & Tórtora-Pérez, J. L. (2010). The importance of selenium and the effects of its deficiency in animal health. Small Ruminant Research, 89(2–3), 185–192. https://doi.org/10.1016/j.smallrumres.2009.12.042

    Article  Google Scholar 

  • Hein, C. (2014). Speciation via hyphenation–Metal speciation in geological and environmental samples by CE-ICP-MS. Journal of Analytical & Bioanalytical Techniques. https://doi.org/10.4172/2155-9872.1000225

    Article  Google Scholar 

  • Herbert, C. T., & Compton, J. S. (2007). Depositional environments of the lower Permian Dwyka diamictite and Prince Albert shale inferred from the geochemistry of early diagenetic concretions, southwest Karoo Basin South Africa. Sedimentary Geology, 194(3–4), 263–277. https://doi.org/10.1016/j.sedgeo.2006.06.008

    Article  Google Scholar 

  • Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Peng, Q., et al. (2018). Nano-selenium and its nanomedicine applications: A critical review. International Journal of Nanomedicine, 13, 2107–2128. https://doi.org/10.2147/IJN.S157541

    Article  CAS  Google Scholar 

  • Huang, C., Hu, B., He, M., & Duan, J. (2008). Organic and inorganic selenium speciation in environmental and biological samples by nanometer-sized materials packed dual-column separation/ preconcentration on-line coupled with ICP-MS. Journal of Mass Spectrometry, 43(3), 336–345. https://doi.org/10.1002/jms.1321

    Article  CAS  Google Scholar 

  • Huang, Y., Ge, D. Y., Zong, H., Yin, J. X., Qu, X. N., & Lv, S. W. (2017). Active site mimicry of glutathione peroxidase by glutathione imprinted selenium-containing trypsin. Catalysts, 7(10), 1–12. https://doi.org/10.3390/catal7100282

    Article  CAS  Google Scholar 

  • Inskeep, E. K. (2004). Preovulatory, postovulatory, and postmaternal recognition effects of concentrations of progesterone on embryonic survival in the cow. Journal of Animal Science, 82 E-Suppl, E24–39. https://doi.org/10.2527/2004.8213_supplE24x

  • ISO/IEC. (2017). General requirements for the competence of testing and calibration laboratories. International Organization for Standardization, 2017, 1–38. https://www.iso.org/fr/standard/39883.html

  • Jan, T. (2011). Berzelius discovery of selenium. Chemistry International, 33(5).

  • Johnson, C., Ge, X., Green, K. ., & Liu, X. (1996). Studies of selenium distribution in soil , grain , drinking water and human hair samples from the Keshan Disease belt of Zhangjiakou District , Hebei Province , China. China.

  • Jones, G. D., Droz, B., Greve, P., Gottschalk, P., Poffet, D., McGrath, S. P., et al. (2017). Selenium deficiency risk predicted to increase under future climate change. Proceedings of the National Academy of Sciences, 114(11), 2848–2853. https://doi.org/10.1073/pnas.1611576114

    Article  CAS  Google Scholar 

  • Josipovic, M., Annegarn, H. J., Kneen, M. A., Pienaar, J. J., & Piketh, S. J. (2011). Atmospheric dry and wet deposition of sulphur and nitrogen species and assessment of critical loads of acidic deposition exceedance in South Africa. South African Journal of Science, 107(3/4), 1–10. https://doi.org/10.4102/sajs.v107i3/4.478

    Article  CAS  Google Scholar 

  • Kadrabova, J., Madaric, A., & Ginter, E. (1997). The selenium content of selected food from the Slovak Republic, 58, 0–3.

  • Kafala, S. I., & MacMahon, T. D. (2007). Comparison of neutron activation analysis methods. Journal of Radioanalytical and Nuclear Chemistry, 271(2), 507–516. https://doi.org/10.1007/s10967-007-0238-6

    Article  CAS  Google Scholar 

  • Kamada, H. (2017). Effects of selenium-rich yeast supplementation on the plasma progesterone levels of postpartum dairy cows. Asian-Australasian Journal of Animal Sciences, 30(3), 347–354. https://doi.org/10.5713/ajas.16.0372

    Article  CAS  Google Scholar 

  • Karunasinghe, N., & Ferguson, L. R. (2016). Could selenium be a double-edged sword? In Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals (Collin, Ja., pp. 475–486). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802168-2.00039-7

  • Kieliszek, M. (2019). Selenium–fascinating microelement, properties and sources in food. Molecules. https://doi.org/10.3390/molecules24071298

    Article  Google Scholar 

  • Kirkham, M, B. (2014). Potential evapotranspiration. In Principles of soil and plant water relation (Second edi., pp. 501–514). Elsevier.

  • Koljonen, T. (2017). Selenium in certain sedimentary rocks. Bulletin of the Geological Society of Finland, 45(2), 119–123. https://doi.org/10.17741/bgsf/45.2.003

  • Kubachka, K. M., Hanley, T., Mantha, M., Wilson, R. A., Falconer, T. M., Kassa, Z., et al. (2017). Evaluation of selenium in dietary supplements using elemental speciation. Food Chemistry, 218, 313–320. https://doi.org/10.1016/j.foodchem.2016.08.086

    Article  CAS  Google Scholar 

  • Lagalante, A. F. (2004). Atomic absorption spectroscopy: A tutorial review. Applied Spectroscopy Reviews, 34(3), 173–189. https://doi.org/10.1081/asr-100100844

    Article  Google Scholar 

  • Landsberger, S. (1992). Analytical methodologies for instrumental neutron activation analysis of airborne particulate matter. Journal of Trace and Microprobe Techniques, 10(1), 1–41.

    CAS  Google Scholar 

  • LeBlanc, K. L., Kumkrong, P., Mercier, P. H. J., & Mester, Z. (2018). Selenium analysis in waters. Part 2: Speciation methods. Science of the Total Environment, 640–641, 1635–1651. https://doi.org/10.1016/j.scitotenv.2018.05.394

    Article  CAS  Google Scholar 

  • Lenz, M., Floor, G. H., Winkel, L. H. E., Román-Ross, G., & Corvini, P. F. X. (2012). Online preconcentration-IC-ICP-MS for selenium quantification and speciation at ultratraces. Environmental Science and Technology, 46(21), 11988–11994. https://doi.org/10.1021/es302550b

    Article  CAS  Google Scholar 

  • Lenz, M., & Lens, P. N. L. (2009). The essential toxin: The changing perception of selenium in environmental sciences. Science of the Total Environment, 407(12), 3620–3633. https://doi.org/10.1016/j.scitotenv.2008.07.056

    Article  CAS  Google Scholar 

  • Li, G., Fan, W. M., Kang, M. D., & Li, M. C. (1985). Keshan disease: An endemic cardiomyopathy in China. Human Pathology, 16(6), 602–609.

    Article  CAS  Google Scholar 

  • Lindsay, A., de Bruno, B., Omar, D., & Richard, H. (2006). Guideline on food fortification with micronutrients. WHO Library. https://doi.org/10.1242/jeb.02490

    Book  Google Scholar 

  • Lino, A. S., Kasper, D., Carvalho, G. O., Guida, Y., & Malm, O. (2020). Selenium in sediment and food webs of the Tapajós River basin (Brazilian Amazon) and its relation to mercury. Journal of Trace Elements in Medicine and Biology, 62(March), 126620. https://doi.org/10.1016/j.jtemb.2020.126620

    Article  CAS  Google Scholar 

  • Lin-Shiau, S. Y., Liu, S. H., Fu, W. M., Vinceti, M., Mandrioli, J., Borella, P., et al. (2014). Selenium neurotoxicity in humans: Bridging laboratory and epidemiologic studies. Toxicology Letters, 230(2), 295–303. https://doi.org/10.1016/j.toxlet.2013.11.016

    Article  CAS  Google Scholar 

  • Liu, Q., Yang, J., Cai, J., Luan, Y., Sattar, H., Liu, M., et al. (2017). Analysis of the interactions between thioredoxin and 20 selenoproteins in chicken. Biological Trace Element Research, 179(2), 304–317. https://doi.org/10.1007/s12011-017-0961-y

    Article  CAS  Google Scholar 

  • Long, J. A., Large, R. R., Lee, M. S. Y., Benton, M. J., Danyushevsky, L. V., Chiappe, L. M., et al. (2016). Severe selenium depletion in the Phanerozoic oceans as a factor in three global mass extinction events. Gondwana Research, 36, 209–218. https://doi.org/10.1016/j.gr.2015.10.001

    Article  CAS  Google Scholar 

  • Malisa, E. P. (2001). The behaviour of selenium in geological processes. Environmental Geochemistry and Health, 23(2), 137–158. https://doi.org/10.1023/A:1010908615486

    Article  CAS  Google Scholar 

  • Martins, J. J., Dhammapala, R. S., Lachmann, G., Galy-Lacaux, C., & Pienaar, J. J. (2010). Long term measurements of sulfur dioxide, nitrogen dioxide, ammonia, nitric acid and ozone in Africa using passive samplers. Atmospheric Chemistry and Physics Discussions, 10(2), 4407–4461. https://doi.org/10.5194/acpd-10-4407-2010

    Article  Google Scholar 

  • McCourt, S., & van Reenen, D. (1992). Structural geology and tectonic setting of the Sutherland Greenstone Belt, Kaapvaal Craton South Africa. Precambrian Research, 55(1–4), 93–110. https://doi.org/10.1016/0301-9268(92)90017-I

    Article  Google Scholar 

  • McGrath, D., & Fleming, G. (1978). Trace elements in Irish soils with special reference to cobalt and Selenium. National University of Ireland.

    Google Scholar 

  • Mehdi, Y., & Dufrasne, I. (2016). Selenium in cattle: A review. Molecules. https://doi.org/10.3390/molecules21040545

    Article  Google Scholar 

  • Mehdi, Y., Hornick, J. L., Istasse, L., & Dufrasne, I. (2013). Selenium in the environment, metabolism and involvement in body functions. Molecules, 18(3), 3292–3311. https://doi.org/10.3390/molecules18033292

    Article  CAS  Google Scholar 

  • Melgar, M. J., Núñez, R., & García, M. Á. (2019). Selenium intake from tuna in Galicia (Spain): Health risk assessment and protective role against exposure to mercury and inorganic arsenic. Science of the Total Environment, 694, 133716. https://doi.org/10.1016/j.scitotenv.2019.133716

    Article  CAS  Google Scholar 

  • Melse-Boonstra, A., Hogenhamp, P., & Lungu, O. (2007). Mitigating HIV / AIDS in Sub-Saharan Africa through selenium in food. Lusaka.

  • Messaoudi, M., Begaa, S., Benarfa, A., Ouakouak, H., Benchikha, N., & Ferhat, M. A. (2020). Radiochemical separation by liquid-liquid extraction for the determination of selenium in Mentha pulegium L.: Toxicity monitoring and health study. Applied Radiation and Isotopes, 159, 109099. https://doi.org/10.1016/j.apradiso.2020.109099

  • Miller, M. A., Thompson, J. R., Miller, M. A., & Thompson, J. R. (1981). Selenium deficiency in cattle. South African Journal of Animal Science, 11(2), 183–186.

    Google Scholar 

  • Milovanovic, I., Lajin, B., Braeuer, S., Steiner, O., Lisa, F., & Goessler, W. (2019). Simultaneous selenium and sulfur speciation analysis in cultivated Pleurotus pulmonarius mushroom. Food Chemistry. https://doi.org/10.1016/j.foodchem.2018.12.009

    Article  Google Scholar 

  • Moore, J. M., Tsikos, H., & Polteau, S. (2001). Deconstructing the transvaal supergroup, South Africa: Implications for palaeoproterozoic palaeoclimate models. Journal of African Earth Sciences, 33(3–4), 437–444.

    Article  Google Scholar 

  • Morakinyo, O. M., Mukhola, M. S., & Mokgobu, M. I. (2020). Ambient gaseous pollutants in an urban area in South Africa: Levels and potential human health risk. Atmosphere. https://doi.org/10.3390/atmos11070751

    Article  Google Scholar 

  • Moreda-Piñeiro, J., Sánchez-Piñero, J., Mañana-López, A., Turnes-Carou, I., Alonso-Rodríguez, E., López-Mahía, P., & Muniategui-Lorenzo, S. (2018). Selenium species determination in foods harvested in seleniferous soils by HPLC-ICP-MS after enzymatic hydrolysis assisted by pressurization and microwave energy. Food Research International, 111, 621–630. https://doi.org/10.1016/j.foodres.2018.06.003

    Article  CAS  Google Scholar 

  • Mphepya, J. N., Galy-Lacaux, C., Lacaux, J. P., Held, G., & Pienaar, J. J. (2006). Precipitation chemistry and wet deposition in Kruger National Park, South Africa. Journal of Atmospheric Chemistry, 53(2), 169–183. https://doi.org/10.1007/s10874-005-9005-7

    Article  CAS  Google Scholar 

  • Natasha, S. M., Niazi, N. K., Khalid, S., Murtaza, B., Bibi, I., & Rashid, M. I. (2018). A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environmental Pollution, 234, 915–934. https://doi.org/10.1016/j.envpol.2017.12.019

    Article  CAS  Google Scholar 

  • National Research Council (US) Subcommittee on selenium. (1983). Selenium in Nutrition, Revised Edition. Selenium in nutrition: Revised Edition. National Academy of Science

  • Navarro-Alarcon, M., & Cabrera-Vique, C. (2008). Selenium in food and the human body: A review. Science of the Total Environment, 400(1–3), 115–141. https://doi.org/10.1016/j.scitotenv.2008.06.024

    Article  CAS  Google Scholar 

  • Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science. https://doi.org/10.1155/2019/5794869

    Article  Google Scholar 

  • Neufeld, L. M., & Friesen, V. M. (2018). Impact evaluation of food fortification programs. In Food fortification in a globalized world (pp. 305–315). Geneva: Elsevier Inc. https://doi.org/10.1016/b978-0-12-802861-2.00032-8

  • Ng, C. F., Schafer, F. Q., Buettner, G. R., & Rodgers, V. G. J. (2007). The rate of cellular hydrogen peroxide removal shows dependency on GSH: Mathematical insight into in vivo H2O2 and GPx concentrations. Free Radical Research, 41(11), 1201–1211. https://doi.org/10.1080/10715760701625075

    Article  CAS  Google Scholar 

  • Oldfield, J. (2000). Selenium world atlas. Grimbergen - Selenium-Tellurium Development Association (STDA).

  • Oliveira, F., Landero, J., Kubachka, K., Nongueira, A. R., Zanetti, M., & Caruso, J. (2016). Development and application of a selenium speciation method in cattle feed and beef samples using HPLC-ICP-MS: Evaluating the selenium metabolic process in cattle. Journal of Analytical Atomic Spectrometry, 31(4), 1034–1040. https://doi.org/10.1039/C5JA00330J

    Article  CAS  Google Scholar 

  • Pannier, F., Potin-gautier, M., & Technologies, A. (2007). Determination of organic and inorganic selenium species using HPLC-ICP-MS. Agilent Technologies. France. https://www.agilent.com/cs/library/applications/5989-7073EN.pdf

  • Papp, L. V., Lu, J., Holmgren, A., & Khanna, K. K. (2007). From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antioxidants & Redox Signaling, 9(7), 775–806. https://doi.org/10.1089/ars.2007.1528

    Article  CAS  Google Scholar 

  • Plessl, C., Gilbert, B. M., Sigmund, M. F., Theiner, S., Avenant-Oldewage, A., Keppler, B. K., & Jirsa, F. (2019). Mercury, silver, selenium and other trace elements in three cyprinid fish species from the Vaal Dam, South Africa, including implications for fish consumers. Science of the Total Environment, 659, 1158–1167. https://doi.org/10.1016/j.scitotenv.2018.12.442

    Article  CAS  Google Scholar 

  • Popp, M., Hann, S., & Koellensperger, G. (2010). Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to inductively coupled plasma mass spectrometry-A review. Analytica Chimica Acta, 668(2), 114–129. https://doi.org/10.1016/j.aca.2010.04.036

    Article  CAS  Google Scholar 

  • Prabhakar, R., Vreven, T., Morokuma, K., & Musaev, D. G. (2005). Elucidation of the mechanism of selenoprotein glutathione peroxidase (GPx)-catalyzed hydrogen peroxide reduction by two glutathione molecules: A density functional study. Biochemistry, 44(35), 11864–11871. https://doi.org/10.1021/bi050815q

    Article  CAS  Google Scholar 

  • Pursley, J. R., & Martins, J. P. N. (2011). Impact of circulating concentrations of progesterone and antral age of the ovulatory follicle on fertility of high-producing lactating dairy cows. Reproduction, Fertility, and Development, 24(1), 267–271. https://doi.org/10.1071/RD11917

    Article  CAS  Google Scholar 

  • Pyrzynska, K. (2009). Selenium speciation in enriched vegetables. Food Chemistry, 114(4), 1183–1191. https://doi.org/10.1016/j.foodchem.2008.11.026

    Article  CAS  Google Scholar 

  • Quintal-Franco, J. A., Kojima, F. N., Melvin, E. J., Lindsey, B. R., Zanella, E., Fike, K. E., et al. (1999). Corpus luteum development and function in cattle with episodic release of luteinizing hormone pulses inhibited in the follicular and early luteal phases of the estrous cycle. Biology of Reproduction, 61(4), 921–926. https://doi.org/10.1095/biolreprod61.4.921

    Article  CAS  Google Scholar 

  • Rady, M. M., Belal, H. E. E., Gadallah, F. M., & Semida, W. M. (2020). Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Scientia Horticulturae. https://doi.org/10.1016/j.scienta.2020.109290

    Article  Google Scholar 

  • Ralston, N. V. C., Unrine, J., & Wallschläger, D. (2010). Biogeochemistry and analysis of selenium and its s pecies. North American Metals Council, 1, 1–58.

    Google Scholar 

  • Ranches, J., Alves, R., Vedovatto, M., Palmer, E. A., Moriel, P., & Arthington, J. D. (2021). Differences in copper and selenium metabolism between Angus (Bos taurus) and Brahman (Bos indicus) cattle. Journal of Animal Science, 99(3), 1–14. https://doi.org/10.1093/jas/skab048

    Article  Google Scholar 

  • Rayman, M. P. (2004). The use of high-selenium yeast to raise selenium status: How does it measure up? British Journal of Nutrition, 92(4), 557–573.

    Article  CAS  Google Scholar 

  • Reis, A. Dos, El-Ramady, H., Santos, E., Gatrao, P., & Schomburg, L. (2017). Selenium in plants: Molecular, physiological, ecological and evolutionary aspects. In E. Pilon-Smits, Z.-Q. Lin, & W. Lenny (Eds.), Selenium in plants (p. 231). Spinger. https://doi.org/10.1007/978-3-319-56249-0

  • Republic of South Africa. (2004). Government Gazette. Prevention, 469(869), 4–6.

  • Rezende, H. C., Almeida, I. L. S., Coelho, L. M., Coelho, N. M. M., & Marques, T. L. (2015). Non-chromatographic methods focused on speciation of arsenic and selenium in food and environmental samples. Sample Preparation, 2(1), 31–48. https://doi.org/10.2478/sampre-2014-0004

    Article  Google Scholar 

  • Rodríguez, A. M., López Valiente, S., Brambilla, C. E., Fernández, E. L., & Maresca, S. (2020). Effects of inorganic selenium injection on the performance of beef cows and their subsequent calves. Research in Veterinary Science, 133(May), 117–123. https://doi.org/10.1016/j.rvsc.2020.09.014

    Article  CAS  Google Scholar 

  • Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W. G. (1973). Selenium: Biochemical role as a component of glatathione peroxidase. Science, 179(4073), 588–590. https://doi.org/10.1126/science.179.4073.588

    Article  CAS  Google Scholar 

  • Van Ryssen, J. B. J. (2006). An evaluation of the trace element nutritional status of grazers in the eastern regions of the Free State and Mpumalanga. South African Journal of Animal Science, 7(June), 22–30. http://www.sasas.co.za/Popular/Popular.html

  • Sadiq, N. W., & Beauchemin, D. (2017). Simultaneous speciation analysis of arsenic, chromium, and selenium in the bioaccessible fraction for realistic risk assessment of food safety. Analytical Chemistry, 89(24), 13299–13304. https://doi.org/10.1021/acs.analchem.7b03423

    Article  CAS  Google Scholar 

  • Sahin, S. (2012). An aridity index defined by precipitation and specific humidity. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2012.04.019

    Article  Google Scholar 

  • Santos, S., Ungureanu, G., Boaventura, R., & Botelho, C. (2015). Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods. Science of the Total Environment, 521–522(1), 246–260. https://doi.org/10.1016/j.scitotenv.2015.03.107

    Article  CAS  Google Scholar 

  • Selala, M. S., Thenga, H., Jewitt, G. P. W., & Chaplot, V. (2018). Comparison of the chemical quality of rainwater harvested from roof and surface run-off systems. Water SA, 44(2), 223–231. https://doi.org/10.4314/wsa.v44i2.08

    Article  CAS  Google Scholar 

  • Sharma, S., & Singh, R. (1983). Selenium in soil, plant, and animal systems. Critical Reviews in Environmental Control Science and Technology, 13(1), 23–50. https://doi.org/10.1080/10643388309381701

    Article  CAS  Google Scholar 

  • Shikwambana, L., Mhangara, P., & Mbatha, N. (2020). Trend analysis and first time observations of sulphur dioxide and nitrogen dioxide in South Africa using TROPOMI/Sentinel-5 P data. International Journal of Applied Earth Observation and Geoinformation. https://doi.org/10.1016/j.jag.2020.102130

    Article  Google Scholar 

  • Shini, S., Sultan, A., & Bryden, W. (2015). Selenium biochemistry and bioavailability: Implications for animal agriculture. Agriculture, 5(4), 1277–1288. https://doi.org/10.3390/agriculture5041277

    Article  CAS  Google Scholar 

  • Silvestre, F. T., Rutigliano, H. M., William, W., Santos, J. E. P., & Staples, C. R. (2003). Effect of selenium source on production , reproduction and immunity of lactating dairy cows in Florida and California, (July 2014), 265–277.

  • Sneddon, J., Farah, B., & Farah, K. S. (1993). Multielement atomic absorption spectrometry: A historical perspective. Microchemical Journal. https://doi.org/10.1006/mchj.1993.1105

    Article  Google Scholar 

  • Sneddon, J., & Vincent, M. D. (2008). ICP-OES and ICP-MS for the determination of metals: Application to oysters. Analytical Letters, 41(8), 1291–1303. https://doi.org/10.1080/00032710802013991

    Article  CAS  Google Scholar 

  • Soetan, K. O., Olaiya, C. O., & Oyewole, O. E. (2010). The importance of mineral elements for humans, domestic animals and plants. African Journal of Food Science, 4(5), 200–222. https://doi.org/10.1186/s12302-017-0116-y

    Article  CAS  Google Scholar 

  • Song, T., Cui, G., Su, X., He, J., Tong, S., & Liu, Y. (2020). The origin of soil selenium in a typical agricultural area in Hamatong River Basin, Sanjiang Plain, China. Catena, 185(August 2019), 104355. https://doi.org/10.1016/j.catena.2019.104355

  • Stillings, L. L. (2017). Economic and environmental geology and prospects for future supply. In K. J. Schulz, J. H. DeYoung, R. R. Seal II, & D. Bradley (Eds.), Critical mineral resources of the United States (p. 1802). https://doi.org/10.3133/pp1802Q

  • Tan, L. C., Nancharaiah, Y. V., van Hullebusch, E. D., & Lens, P. N. L. (2016). Selenium: Environmental significance, pollution, and biological treatment technologies. Biotechnology Advances, 34(5), 886–907. https://doi.org/10.1016/j.biotechadv.2016.05.005

    Article  CAS  Google Scholar 

  • Thomas, J. P., & Girotti, A. W. (1988). Photooxidation of cell membranes in the presence of hematoporphyrin derivatives: Reactivity of phospholipid and cholesterol hydroperoxides with glutathione peroxidase. Biochimica Et Biophysica Acta, 962, 297–307.

    Article  CAS  Google Scholar 

  • Thomas, R. J., von Veh, M. W., & McCourt, S. (1993). The tectonic evolution of southern Africa: An overview. Journal of African Earth Sciences, 16(1–2), 5–24. https://doi.org/10.1016/0899-5362(93)90159-N

    Article  Google Scholar 

  • Tie, M., Li, B., Sun, T., Guan, W., Liang, Y., & Li, H. (2016). HPLC-ICP-MS speciation of selenium in Se-cultivated Flammulina velutipes. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2017.05.012

    Article  Google Scholar 

  • Van Loggerenberg, D. E., Laver, P. N., Myburgh, J. G., & Botha, C. J. (2019). Diagnostic value of energy dispersive hand-held x-ray fluorescence spectrometry in determining trace element concentrations in ovine liver. Biological Trace Element Research, 190(2), 358–361. https://doi.org/10.1007/s12011-018-1546-0

    Article  CAS  Google Scholar 

  • Van Ryssen, J. B. J., & Bradfield, G. D. (1992). An assessment of the selenium, copper and zinc status of sheep on cultivated pastures in the natal midlands. Journal of the South African Veterinary Association, 63(4), 156–161.

    Google Scholar 

  • Vanhaecke, F. (2015). Agilent 8800 ICP-QQQ application handbook Agilent 8800 ICP-QQQ. Agilent Technologies Application Handbook, 2, 1–92.

    Google Scholar 

  • Vorster, H., JB, B., & Venter, C. (2013). Food-based dietary guidelines for South Africa. South African Journal of Clinical Nutrition, 26(3), S1–S164. www.sajcn.co.za

  • Wadgaonkar, S. L. (2018). Novel bioremediation processes for treatment of seleniferous soils and sediment. University Paris-est.

  • Wei, H., Liu, Y., Xiang, H., Zhang, J., Li, S., & Yang, J. (2020). Soil pH responses to simulated acid rain leaching in three agricultural soils. Sustainability, 12(280), 1–12.

    Google Scholar 

  • White, P. J. (2016). Selenium accumulation by plants. Annals of Botany, 117(2), 217–235. https://doi.org/10.1093/aob/mcv180

    Article  CAS  Google Scholar 

  • White, P. J. (2018). Selenium metabolism in plants. Biochimica Et Biophysica Acta—General Subjects, 1862(11), 2333–2342. https://doi.org/10.1016/j.bbagen.2018.05.006

    Article  CAS  Google Scholar 

  • Xing, K., Zhou, S., Wu, X., Zhu, Y., Kong, J., Shao, T., & Tao, X. (2015). Concentrations and characteristics of selenium in soil samples from Dashan Region, a selenium-enriched area in China. Soil Science and Plant Nutrition, 61(6), 889–897. https://doi.org/10.1080/00380768.2015.1075363

    Article  CAS  Google Scholar 

  • Yu, X., Liu, C., Guo, Y., & Deng, T. (2019). Speciation analysis of trace arsenic, mercury, selenium and antimony in environmental and biological samples based on hyphenated techniques. Molecules, 24(5). https://doi.org/10.3390/molecules24050926

  • Zhang, X. (2013). Aqueous speciation of selenium during its uptake by green algae Chlamydomonas reinhardtii. University of Waterloo. Retrieved from http://hdl.handle.net/10012/7520

  • Zhu, Y. G., Pilon-Smits, E. A. H., Zhao, F. J., Williams, P. N., & Meharg, A. A. (2009). Selenium in higher plants: Understanding mechanisms for biofortification and phytoremediation. Trends in Plant Science, 14(8), 436–442. https://doi.org/10.1016/j.tplants.2009.06.006

    Article  CAS  Google Scholar 

  • Zoidis, E., Seremelis, I., Kontopoulos, N., & Danezis, G. (2018). Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxidants, 7(5), 66. https://doi.org/10.3390/antiox7050066

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Metrology Institute of South Africa (NMISA), University of Johannesburg (UJ.), National Research Foundation (NRF) grant number 108508, and the University of Pretoria Paraclinical Science department.

Funding

This work was funded by the National Metrology Institute of South Africa (NMISA) and the National Research Foundation (NRF) Grant Number 108508.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philiswa Nosizo Nomngongo.

Ethics declarations

Conflicts of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takata, N., Myburgh, J., Botha, A. et al. The importance and status of the micronutrient selenium in South Africa: a review. Environ Geochem Health 44, 3703–3723 (2022). https://doi.org/10.1007/s10653-021-01126-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01126-3

Keywords

Navigation