Skip to main content

Advertisement

Log in

Changes of mercury and methylmercury content and mercury methylation in Suaeda salsa soil under different salinity

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In this paper, we studied the changes of Hg and MeHg contents in Liaohe estuarine Suaeda salsa soils under anaerobic conditions by simulated indoor incubation at constant temperature and whether the changes of salinity (CK, 0.5%, 1.0%, 1.5%, 2.0%) affected SRB and dominated the formation of MeHg. The lowest Hg content is found in the subsurface Suaeda salsa soils at 2.0% salinity. The MeHg content in the soil also showed a general trend of increasing and then decreasing with increasing flooding salinity, and the MeHg content was higher at 0.5–1.0% flooding salinity. SRB was present in the soil under all salinity conditions and reached the maximum value at 15 days of incubation. The SRB content was higher under CK, S1 and S2 conditions, and the soil MeHg content showed a significant positive correlation with the number of SRB bacteria, indicating that the formation of MeHg was related to SRB which is of great significance to the study of estuarine wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The data and materials involved in this article all come from the results of the project team's own measurement, except for the marked citations.

References

  • Barkay, T., Gillman, M., & Turner, R. R. (1997). Effects of dissolved organic carbon and salinity on bioavailability of mercury. Applied and Environmental Microbiology, 63(11), 4267–4271.

    Article  CAS  Google Scholar 

  • Benoit, J. M. (2003). Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. ACS Symposium Series, 835, 262–297.

    Article  CAS  Google Scholar 

  • Blum, P. W., Hershey, A. E., Tsui, M. T., Hammerschmidt, C. R., & Agather, A. M. (2018). Methylmercury and methane production potentials in North Carolina Piedmont stream sediments. Biogeochemistry, 137(1–2), 181–195.

    Article  CAS  Google Scholar 

  • Boyd, E. S., Yu, R. Q., Barkay, T., Hamilton, T. L., & Baxter, B. K. (2017). Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah. Science of the Total Environment, 581–582, 495–506. https://doi.org/10.1016/j.scitotenv.2016.12.157

    Article  CAS  Google Scholar 

  • Bravo, A. G., Bouchet, S., Tolu, J., Bjorn, E., Mateos-Rivera, A., & Bertilsson, S. (2017). Molecular composition of organic matter controls methylmercury formation in boreal lakes. Nature Communications, 8, 14255. https://doi.org/10.1038/ncomms14255

    Article  CAS  Google Scholar 

  • Compeau, G. C., & Bartha, R. (1984). Methylation and demethylation of mercury under controlled redox, pH and salinity conditions. Applied and Environmental Microbiology, 48(6), 1203–1207. https://doi.org/10.1128/aem.48.6.1203-1207.1984

    Article  CAS  Google Scholar 

  • Compeau, G. C., & Bartha, R. (1985). Sulfate-reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology, 50(2), 498–502. https://doi.org/10.1128/AEM.50.2.498-502.1985

    Article  CAS  Google Scholar 

  • Cui, B. S., He, Q., & Zhao, X. S. (2008a). Ecological thresholds of winged alkali ponies (Suaedasalsa) under water-salt environmental gradients. Journal of Ecology, 28(4), 1408–1418.

    Google Scholar 

  • Cui, B. S., He, Q., & Zhao, X. S. (2008b). Researches on the ecological thresholds of Suaeda salsa to the environmental gradients of water table depth and soil salinity. Acta Ecologica Sinica, 28(4), 1408–1418.

    Article  Google Scholar 

  • Figueiredo, N., Serralheiro, M. L., Canário, J., Duarte, A., Hintelmann, H., & Carvalho, C. (2018). Evidence of Mercury Methylation and Demethylation by the Estuarine Microbial Communities Obtained in Stable Hg Isotope Studies. International Journal of Environmental Research and Public Health, 15(10), 2141. https://doi.org/10.3390/ijerph15102141

    Article  CAS  Google Scholar 

  • Fleming, E. J., Mack, E. E., Green, P. G., & Nelson, D. C. (2006). Mercury methylation from unexpected sources: Molybdateinhibited freshwater sediments and an iron-reducing bacterium. Applied and Environmental Microbiology, 72(1), 457–464. https://doi.org/10.1128/aem.72.1.457-464.2006

    Article  CAS  Google Scholar 

  • Gilmour, C. C., Elias, D. A., Kucken, A. M., Brown, S. D., Palumbo, V. A., Schadt, C. W., et al. (2011). Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Applied and Environmental Microbiology, 77(12), 3938–3951. https://doi.org/10.1128/AEM.02993-10

    Article  CAS  Google Scholar 

  • Graham, A. M., Aiken, G. R., & Gilmour, C. C. (2012a). Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environmental Science and Technology, 46(5), 2715–2723. https://doi.org/10.1021/es203658f

    Article  CAS  Google Scholar 

  • Hall, B. D., Aiken, G. R., Krabbenhoft, D. P., & Swarzeski, C. M. (2008). Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region. Environmental Pollution, 154(1), 124–134. https://doi.org/10.1016/j.envpol.2007.12.017

    Article  CAS  Google Scholar 

  • Hamelin, S., Amyot, M., Barkay, T., Wang, Y. P., & Planas, D. (2011). Methanogens: Principal methylators of mercury in lake periphyton. Environmental Science Technology, 45(18), 7693–7700. https://doi.org/10.1021/es2010072

    Article  CAS  Google Scholar 

  • Hsu-Kim, H., Kucharzyk, K. H., Zhang, T., & Deshusses, M. A. (2013). Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environmental Science and Technology, 47(6), 2441–2456. https://doi.org/10.1021/es304370g

    Article  CAS  Google Scholar 

  • Kotnik, J., Horvat, M., Fajon, V., & Logar, M. (2002). Mercury in Small Freshwater Lakes: A Case Study: Lake Velenje Slovenia. Water Air and Soil Pollution, 134(1), 317–337.

    Article  Google Scholar 

  • Li, H., Zheng, D. M., Yang, J. S., Wu, C. H., Zhang, S. W., Li, H. Y., et al. (2019). Salinity and redox conditions affect the methyl mercury formation in sediment of Suaeda heteroptera wetlands of Liaoning province, Northeast China. Maine Pollution Bulletin, 142, 537–543. https://doi.org/10.1016/j.marpolbul.2019.03.066

    Article  CAS  Google Scholar 

  • Lindqvist, O., Johansson, K., Bringmark, L., Timm, B., Aastrup, M., Andersson, A., et al. (1991). Mercury in the Swedish environment: Recent:Recent research on causes, consequences and corrective methods. Water, Air and Soil Pollution, 55(1/2), 80–85.

    Google Scholar 

  • Liu, Y., Lu, X., Zhao, L., An, J., He, J. Z., Pierce, E. M., et al. (2016). Effects of cellular sorption on mercury bioavailability and methylmercury production by Desulfovibrio desulfuricans ND132. Environmental Science and Technology, 50, 13335–13341. https://doi.org/10.1021/acs.est.6b04041

    Article  CAS  Google Scholar 

  • Moreau, J. W., Gionfriddo, C. M., Krabbenhoft, D. P., Ogorek, J. M., DeWild, J. F., Aiken, G. R., et al. (2015). The effect of natural organic matter on mercury methylation by Desulfobulbus propionicus 1pr3. Frontiers in Microbiology, 6, 1389. https://doi.org/10.3389/fmicb.2015.01389

    Article  Google Scholar 

  • Ning, T. (2012). Distribution characteristics, causes and ecological risks of mercury in soil and river and lake sediments in the Chaohu Lake Basin. Nanjing University.

    Google Scholar 

  • Orihel, D. M., Paterson, M. J., Blanchfield, P. J., Bodaly, R. A., & Hinerlmann, H. (2007). Experimental evidence of a linear relationship between inorganic mercury loading and methylmercury accumulation by aquatic biota. Environmental Science and Technology, 41(14), 4952–4958. https://doi.org/10.1021/es063061r

    Article  CAS  Google Scholar 

  • Rickard, D., & Morse, J. W. (2005). Acid Volatile Sulphide (AVS). Marine Chemistry, 97, 141–197.

    Article  CAS  Google Scholar 

  • Tjerngren, I., Meili, M., Björn, E., & Skyllberg, U. (2012). Eight boreal wetlands as sources and sinks for methyl mercury about soil acidity, C/Nratio, and small-scale flooding. Environmental Science and Technology, 46(15), 8052–8060. https://doi.org/10.1021/es300845x

    Article  CAS  Google Scholar 

  • Todorova, S. G., Driscoll, C. T., Effler, S. W., O’Donnell, S., Matthews, D. A., Todorov, D. L., et al. (2014). Changes in the long-term supply of mercury species to the upper mixed waters of a recovering lake. Environmental Pollution, 185, 314–321. https://doi.org/10.1016/j.envpol.2013.11.005

    Article  CAS  Google Scholar 

  • Xiang, Y. P., Du, H. X., Shen, H., Zhang, C., & Wang, D. Y. (2014). Dynamics of total culturable bacteria and its relationship with methylmercury in the soils of the water level fluctuation zone of the Three Gorges Reservoir. Chinese Science Bulletin, 59(24), 2966–2972. https://doi.org/10.1007/s11434-014-0324-4

    Article  CAS  Google Scholar 

  • Yang, J. S., Zhan, C., Li, Y. Z., Zhou, D., Yu, Y., & Yu, J. B. (2018). Effect of salinity on soil respiration in relation to dissolved organic carbon and microbial characteristics of a wetland in the Liaohe River estuary, Northeast China. Science of the Total Environment, 642, 946–953.

    Article  CAS  Google Scholar 

  • Yu, R. Q., Flanders, J. R., Mack, E. E., Turner, R., Mirza, M. B., & Barkay, T. (2012). Contribution of coexisting sulfate and iron-reducing bacteria to methylmercury production in freshwater river sediments. Environmental Science and Technology, 46(5), 2684–2691. https://doi.org/10.1021/es2033718

    Article  CAS  Google Scholar 

  • Zhang, S. W., Zheng, D. M., Xin, Y., Mao, Y., Shi, L., & Li, H. Y. (2020). Study on Mercury Methylation in Phragmites australis Soil and Its Influencing Factors, Water. Air and Soil Pollution, 231, 426. https://doi.org/10.1007/s11270-020-04744-2

    Article  CAS  Google Scholar 

  • Zhao, J. (2011). Environmental geochemistry of mercury in the coastal tidal flats of the Yangtze River Estuary. East China Normal University.

    Google Scholar 

  • Zhao, L. D., Chen, H. M., Lu, X., Lin, H., Christensen, G. A., Pierce, E. M., et al. (2017). Contrasting Effects of Dissolved Organic Matter on Mercury Methylation by Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132. Environmental Science Technology, 51(18), 10468–10475. https://doi.org/10.1021/acs.est.7b02518

    Article  CAS  Google Scholar 

  • Zheng, D. M., Liu, X. H., Jin, D., Li, X. X., & Li, H. Y. (2018). Mercury bioaccumulation in arthropods from typical community habitats in a zinc-smelting area. Environmental Geochemistry and Health, 40(4), 1329–1337. https://doi.org/10.1007/s10653-017-0059-7

    Article  CAS  Google Scholar 

  • Zheng, S. A., Han, L., Li, X. H., Xu, Y. H., Duan, Q. H., & Zheng, X. Q. (2017). A simulation study on the effect of salinity on the fractions distribution of exogenous mercury in the wastewater-irrigated area of Tianjin City. Environmental Science, 37(5), 1858–1865.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the national natural science foundation (41571085) and Liaoning Provincial Science and Technology Department Guidance Program (2019JH8/10200024).

Funding

This project is supported by the National Natural Science Foundation (41571085) and Liaoning Provincial Science and Technology Department Guidance Program, 2019-ZD-0555.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Dongmei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All authors have read and approved this version of the article, and due care has been taken to ensure the integrity of the work. Neither the entire paper nor any part of its content has been published or has been accepted elsewhere. It is not being submitted to any other journal.

Animal research

No approval of research ethics committees was required to accomplish the goals of this study because no animals appeared in this experiment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dongmei, Z., Xinyu, L., Hang, L. et al. Changes of mercury and methylmercury content and mercury methylation in Suaeda salsa soil under different salinity. Environ Geochem Health 44, 1399–1407 (2022). https://doi.org/10.1007/s10653-021-01094-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01094-8

Keywords

Navigation