Skip to main content
Log in

Species sensitivity distributions for ethylparaben to derive protective concentrations for soil ecosystems

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Ethylparaben is used as an antifungal preservative. Although some countries have implemented regulations for human exposure to parabens, environmental regulations for ethylparaben have not been established. This study provides new toxicological data for ethylparaben, for which data regarding soil organisms were previously lacking. Although ethylparaben toxicity has been reported in other species, we present herein the first comprehensive study of its toxicity in soil organisms. We used 12 test species (Lycopersicon esculentum, Vigna radiata, Hordeum vulgare, Oryza sativa, Eisenia andrei, Folsomia candida, Lobella sokamensis, Caenorhabiditis elegans, Chlamydomonas reinhardtii, Chlorococcum infusionum, Chlorella sorokiniana, Chlorella vulgaris) from eight taxonomic groups for acute bioassays and nine test species (L. esculentum, V. radiata, H. vulgare, O. sativa, C. reinhardtii, C. infusionum, C. sorokiniana, and C. vulgaris) from five taxonomic groups for chronic bioassays. A suite of acute and chronic toxicity tests, using 21 soil species, was conducted to estimate EC50 values, which facilitated the construction of species sensitivity distributions (SSDs) and the calculation of protective concentrations (PCs). Acute and chronic PC95 values (protective concentration for 95% of species) for ethylparaben were estimated to be 14 and 5 mg/kg dry soil, respectively. To the best of our knowledge, this is the first study to evaluate the toxicity of ethylparaben to soil species and derive PCs for soil ecosystems based on SSDs. Therefore, the data presented in this study can be used as a basis for further investigations of paraben toxicity to the soil environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amorim, M. J. B., Oliveira, E., Soares, A. M. V. M., & Scott-Fordsmand, J. J. (2010). Predicted no effect concentration (PNEC) for triclosan to terrestrial species (invertebrates and plants). Environment International, 36(4), 338–343.

    Article  CAS  Google Scholar 

  • An, Y.-J., Kim, S. W., & Lee, W. M. (2013). The collembola Lobella sokamensis juvenile as a new soil quality indicator of heavy metal pollution. Ecological Indicators, 27, 56–60. https://doi.org/10.1016/j.ecolind.2012.11.017

    Article  CAS  Google Scholar 

  • ASTM. (2001). Standard guide for conducting laboratory soil toxicity tests with the nematode Caenorhabditis elegans. E2172–01. ASTM International, West Conshohocken, PA, USA.

  • Błedzka, D., Gromadzińska, J., & Wasowicz, W. (2014). Parabens. From environmental studies to human health. Environment International, 67, 27–42. https://doi.org/10.1016/j.envint.2014.02.007

    Article  CAS  Google Scholar 

  • Brenner, S. J. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71–94.

    Article  CAS  Google Scholar 

  • Camino-Sánchez, F. J., Zafra-Gómez, A., Dorival-García, N., Juárez-Jiménez, B., & Vílchez, J. L. (2016). Determination of selected parabens, benzophenones, triclosan and triclocarban in agricultural soils after and before treatment with compost from sewage sludge: A lixiviation study. Talanta, 150, 415–424. https://doi.org/10.1016/j.talanta.2015.12.031

    Article  CAS  Google Scholar 

  • Chen, J., Meng, X., & zhou, Bergman, A., Halden, R.U., . (2019). Nationwide reconnaissance of five parabens, triclosan, triclocarban and its transformation products in sewage sludge from China. Journal of Hazardous Materials, 365, 502–510. https://doi.org/10.1016/j.jhazmat.2018.11.021

    Article  CAS  Google Scholar 

  • Chu, Q., Wang, J., Zhang, D., & Ye, J. (2010). Sensitive determination of parabens in soy sauces by capillary zone electrophoresis with amperometric detection. European Food Research and Technology, 231, 891–897. https://doi.org/10.1007/s00217-010-1343-2

    Article  CAS  Google Scholar 

  • Crovetto, S. I., Moreno, E., Dib, A. L., Espigares, M., & Espigares, E. (2017). Bacterial toxicity testing and antibacterial activity of parabens. Toxicological and Environmental Chemistry, 99, 858–868. https://doi.org/10.1080/02772248.2017.1300905

    Article  CAS  Google Scholar 

  • Dionisio, K. L., Frame, A. M., Goldsmith, M.-R., Wambaugh, J. F., Liddell, A., Cathey, T., Smith, D., Vail, D., Ernstoff, A. S., Fantke, P., & Jolliet, O. (2015). Exploring consumer exposure pathways and patterns of use for chemicals in the environment. Toxicology Reports, 2, 228–237.

    Article  CAS  Google Scholar 

  • Dobbins, L. L., Usenko, S., Brain, R. A., & Brooks, B. W. (2009). Probabilistic ecological hazard assessment of parabens using Daphnia magna and Pimephales promelas. Environmental Toxicology and Chemistry, 28, 2744–2753. https://doi.org/10.1897/08-523.1

    Article  CAS  Google Scholar 

  • Dunnett, C. W. (1955). A multiple comparison procedure for comparing several treatments with a control. Journal of American Statistical Association, 50, 1096–1121.

    Article  Google Scholar 

  • EFSA (European Food Safety Authority). (2004). EFSA advises on the safety of paraben usage in food. https://www.efsa.europa.eu/en/press/news/040929. Retrieved 26 June 2019.

  • EU (European Union). (2012). Commission Regulation (EU) No. 231/2012.

  • EU (European Union). (2014). Commission Regulation (EU) No. 1004/2014.

  • FDA of United States (Food and Drug Administration). GRAS Substances (SCOGS) Database, http://www.fda.gov/food/ingredientspackaginglabeling/gras/scogs/ucm2006852.htm. Retrieved 26 June 2019.

  • Finney, D. J., & Tattersfield, F. (1952). Probit analysis: A statistical treatment of the sigmoid response curve.

    Google Scholar 

  • Gorman, D. S., & Levine, R. P. (1965). Cytochrome f and plastocyanin: Their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proceedings of the National Academy of Sciences, 54, 1665–1669. https://doi.org/10.1073/pnas.54.6.1665

    Article  CAS  Google Scholar 

  • Guo, Y., & Kannan, K. (2013). A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure. Environmental Science and Technology, 47, 14442–14449. https://doi.org/10.1021/es4042034

    Article  CAS  Google Scholar 

  • Haman, C., Dauchy, X., Rosin, C., & Munoz, J. F. (2015). Occurrence, fate and behavior of parabens in aquatic environments: A review. Water Research, 68, 1–11.

    Article  CAS  Google Scholar 

  • Hamilton, M. A., Russo, R. C., & Thurston, R. V. (1977). Trimmed spearman- karber method for estimating median lethalconcentrations in toxicity biossays. Environmental Science and Technology, 11, 714–719.

    Article  CAS  Google Scholar 

  • Hurtado, C., Montano-Chávez, Y. N., Domínguez, C., & Bayona, J. M. (2017). Degradation of emerging organic contaminants in an agricultural soil: Decoupling biotic and abiotic processes. Water, Air, and Soil Pollution, 228, 243. https://doi.org/10.1007/s11270-017-3402-9

    Article  CAS  Google Scholar 

  • ISO (International Organization for Standardization). (2010). Water quality–determination of the toxic effect of sediment and soil samples on growth, fertility and reproduction of Caenorhabditis elegans (Nematoda). ISO 10872:2010. Geneva, Switzerland.

  • Jianmei, C., Bo, L., Zheng, C., Huai, S., Guohong, L., & Cibin, G. (2015). Identification of ethylparaben as the antimicrobial substance produced by Brevibacillus brevis FJAT-0809-GLX. Microbiological Research, 172, 48–56.

    Article  Google Scholar 

  • Kang, H. M., Kim, M. S., Hwang, U. K., Jeong, C. B., & Lee, J. S. (2019). Effects of methylparaben, ethylparaben, and propylparaben on life parameters and sex ratio in the marine copepod Tigriopus japonicus. Chemosphere, 226, 388–394. https://doi.org/10.1016/j.chemosphere.2019.03.151

    Article  CAS  Google Scholar 

  • Kim, D., Cui, R., Moon, J., Kwak, J. I., Kim, S. W., Kim, D., & An, Y.-J. (2018a). Estimation of the soil hazardous concentration of methylparaben using a species sensitivity approach. Environmental Pollution, 242, 1002–1009. https://doi.org/10.1016/j.envpol.2018.07.053

    Article  CAS  Google Scholar 

  • Kim, D., Kim, L., Kim, D., Kim, S. W., Kwak, J. I., Cui, R., & An, Y. J. (2020). Multispecies bioassay of propylparaben to derive protective concentrations for soil ecosystems using a species sensitivity distribution approach. Environmental Pollution, 265B, 114891. https://doi.org/10.1016/j.envpol.2020.114891

    Article  CAS  Google Scholar 

  • Kim, S. W., Moon, J., Jeong, S. W., & An, Y. J. (2018b). Development of a nematode offspring counting assay for rapid and simple soil toxicity assessment. Environmental Pollution, 236, 91–99. https://doi.org/10.1016/j.envpol.2018.01.037

    Article  CAS  Google Scholar 

  • Kretzschmar, R. M., Hafner, H., Bationo, A., & Marschner, H. (1991). Long and short-term effects of crop residues on aluminum toxicity, phosphorus availability and growth of pearl millet in an acid sandy soil. Plant and Soil, 136, 215–223.

    Article  CAS  Google Scholar 

  • Kwak, J. I., Moon, J., Kim, D., Cui, R., & An, Y. J. (2018). Determination of the soil hazardous concentrations of bisphenol A using the species sensitivity approach. Journal of Hazardous Materials, 344, 390–397. https://doi.org/10.1016/j.jhazmat.2017.10.048

    Article  CAS  Google Scholar 

  • Kwak, J. I., Moon, J., Kim, D., Cui, R., & An, Y. J. (2017). Species sensitivity distributions for nonylphenol to estimate soil hazardous concentration. Environmental Science and Technology, 51, 13957–13966. https://doi.org/10.1021/acs.est.7b04433

    Article  CAS  Google Scholar 

  • Liao, C., Lee, S., Moon, H.-B., Yamashita, N., & Kannan, K. (2013). Parabens in sediment and sewage sludge from the United States, Japan, and Korea: Spatial distribution and temporal trends. Environmental Science and Technology, 47, 10895–10902. https://doi.org/10.1021/es402574k

    Article  CAS  Google Scholar 

  • Madsen, T., Boyd, H. B., & Nylén, D. (2001). Environmental and health assessment of substances in household detergents and cosmetic detergent products. Environ. Proj., 615, 1–35.

    Google Scholar 

  • MFDS of Korea (Ministry of Food and Drug Safety). (2016). Food sanitation act.

  • MHLW of Japan (Ministry of Health, Labor and Welfare). (2000). Standards for Cosmetics (Ministry of Health and Welfare Notification No. 331 of 2000).

  • MOE of Korea (Ministry Of Environment). (2014). Establishment of ecological risk assessment frame for soil pollution and its application scheme in Korea.

  • Nam, S. H., & An, Y.-J. (2017). A rapid screening method to assess soil algal toxicity: Nondestructive sampling of algal cells using culture medium extraction. Applied Soil Ecology, 120, 143e152.

    Article  Google Scholar 

  • Nam, S.-H., & An, Y.-J. (2016). Paper-disc method: An efficient assay for evaluating metal toxicity to soil algae. Environmental Pollution, 216, 1–8. https://doi.org/10.1016/j.envpol.2016.04.061

    Article  CAS  Google Scholar 

  • Nam, S.-H., & An, Y.-J. (2015). An efficient and reproducible method for improving growth of a soil alga (Chlorococcum infusionum) for toxicity assays. Journal of Microbiol Methods, 119, 59–65. https://doi.org/10.1016/j.mimet.2015.10.001

    Article  CAS  Google Scholar 

  • NICNAS of Australia (National Industrial Chemicals Notification and Assessment Scheme). (2015). Parabens: Human health tier II assessment.

  • NICNAS of Australia (National Industrial Chemicals Notification and Assessment Scheme). (2017). Parabens: Environment tier II assessment.

  • NIFDSE of Korea (National Institute of Food and Drug Safety Evaluation). (2014). Biomonitoring of parabens in adult's urine.

  • OECD (Organisation for Economic Co-operation and Development). (1984). OECD Guideline for Testing of Chemicals. Test No.207. Earthworm, Acute Toxicity Tests. https://doi.org/10.1787/9789264070042-en

  • OECD (Organisation for Economic Co-operation and Development). (2006). OECD guideline for the testing of chemicals. Test No.208. Terrestrial plant test: Seedling emergence and seedling growth test. https://doi.org/10.1787/9789264070066-en

  • OECD (Organisation for Economic Co-operation and Development). (2009). OECD guidelines for testing of chemicals. Test No.232. Collembolan Reproduction Test in Soil. https://doi.org/10.1787/9789264076273-en

  • Shirai, S., Suzuki, Y., Yoshinaga, J., Shiraishi, H., & Mizumoto, Y. (2013). Urinary excretion of parabens in pregnant Japanese women. Reproductive Toxicology, 35, 96–101. https://doi.org/10.1016/j.reprotox.2012.07.004

    Article  CAS  Google Scholar 

  • Terasaki, M., Makino, M., & Tatarazako, N. (2009). Acute toxicity of parabens and their chlorinated by-products with Daphnia magna and Vibrio fischeri bioassays. Journal of Applied Toxicology, 29, 242–247. https://doi.org/10.1002/jat.1402

    Article  CAS  Google Scholar 

  • Yamamoto, H., Tamura, I., Hirata, Y., Kato, J., Kagota, K., Katsuki, S., Yamamoto, A., Kagami, Y., & Tatarazako, N. (2011). Aquatic toxicity and ecological risk assessment of seven parabens: Individual and additive approach. Science of the Total Environment, 410–411, 102–111. https://doi.org/10.1016/j.scitotenv.2011.09.040

    Article  CAS  Google Scholar 

  • Zheng, J., Wu, C. D., Huang, J., Zhou, R. Q., & Liao, X. P. (2013). Analysis of volatile compounds in Chinese soy sauces moromi cultured by different fermentation processes. Food Sci. Biotechnol., 22, 605–612. https://doi.org/10.1007/s10068-013-0121-x

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Korea Environment Industry and Technology Institute funded by the Ministry of Environment (No. 2016001970001), and the Graduate School of Specialization for Safe Management of Chemicals.

Author information

Authors and Affiliations

Authors

Contributions

Dokyung Kim, Lia Kim, Dasom Kim, Jin Il Kwak, Shin Woong Kim and Rongxue Cui performed methodology. Dokyung Kim, Lia Kim and Dasom Kim were responsible for investigation. Dokyung Kim was responsible for writing—original draft. Youn-Joo An was responsible for supervision, writing—review & editing and funding acquisition.

Corresponding author

Correspondence to Youn-Joo An.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Kim, L., Kim, D. et al. Species sensitivity distributions for ethylparaben to derive protective concentrations for soil ecosystems. Environ Geochem Health 44, 2435–2449 (2022). https://doi.org/10.1007/s10653-021-01024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01024-8

Keywords

Navigation