Skip to main content

Advertisement

Log in

Predicting the relative oral bioavailability of naturally occurring As, Cd and Pb from in vitro bioaccessibility measurement: implications for human soil ingestion exposure assessment

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Chestnut soils developed over mineralized areas of southwestern Spain are characterized by high baseline concentrations of geogenic trace elements, notably Pb (up to 14,562 mg kg−1), As (up to 346 mg kg−1) and Cd (up to 319 mg kg−1), which could pose an unacceptable risk to the health of the hand-harvest workers who are being exposed to surface soil by incidental ingestion and dermal contact. Oral bioaccessibility, as determined by simulating the human digestion process in a test-tube environment (Unified BARGE Method), followed the increasing order of As (3.1%) < Pb (21.5%) < Cd (35.6%) in the gastric phase, and As (3.4%) < Pb (4.5%) < Cd (13.2%) in the gastrointestinal extract. Relative bioavailability (RBA) of As (3.1–2.1%), Pb (17.8–17.5%) and Cd (34.4–23.3%), predicted from in vitro bioaccessibility measurement through linear regression models, seems to be influenced not only by the pH and composition of digestive solutions but also by geochemical partitioning of trace elements among the soil constituents. The integration of RBA data in the risk calculations had a considerable effect on the site-specific risk estimations. After RBA adjustment, the level of carcinogenic risk associated with As exposure (< 1.5E−06) and the hazard index for non-carcinogens (< 0.4) was within the regulatory limits, indicating that occupational risks are not of concern. Hence, it can be concluded that the use of a default value of 100% for bioavailability may dramatically overestimate the chronic exposure to geologically sourced trace elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The authors confirm that the data supporting the findings of this study are available within the manuscript.

References

  • Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Boland, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122, 121–142.

    Article  CAS  Google Scholar 

  • ATSDR (2019). Substance Priority List. Agency for Toxic Substances and Disease Registry. https://www.atsdr.cdc.gov/spl/. Accessed 15 november 2020

  • Bradham, K. D., Scheckel, K. G., Nelson, C. M., Seales, P. E., Lee, G. E., Hughes, M. F., Miller, B. W., Yeow, A., Gilmore, T., Serda, S. M., Harper, S., & Thomas, D. J. (2011). Relative bioavailability and bioaccessibility and speciation of arsenic in contaminated soils. Environmental Health Perspectives, 119, 1629–1634.

    Article  CAS  Google Scholar 

  • Caboche, J. (2009). Validation d’un test de mesure de bioaccesibilité. Application à quatre éléments traces métalliques dans le sols: As, Cd, Pb, et Sb. (p. 348). Thèse de doctorat.

  • Connor, J. A., Bowers, R. L., McHugh, T. H., & Spexet, A. H. (2007). RBCA Tool Kit for Chemical Releases. Software Guidance Manual. GSI Environ Inc.

  • Denys, S., Caboche, J., Tack, K., Rychen, G., Wragg, J., Cave, M., Jondreville, C., & Feidt, C. (2012). In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium and lead in soils. Environmental Science & Technology, 46, 6252–6260.

    Article  CAS  Google Scholar 

  • Diamond, G. L., Bradham, K. D., Brattin, W. J., Burgess, M., Griffin, S., Hawkins, C. A., & Juhasz, A. L. (2016). Predicting oral relative bioavailability of arsenic in soil from in vitro bioaccessibility. Journal of Toxicology and Environmental Health, Part A, 79, 165–173.

    Article  CAS  Google Scholar 

  • Ellickson, K. M., Meeker, R. J., Gallo, M. A., Buckley, B. T., & Lioy, P. J. (2001). Oral bioavailability of lead and arsenic from a NIST standard reference soil material. Archives of Environmental Contamination and Toxicology, 40, 128–135.

    Article  CAS  Google Scholar 

  • Fernández-Caliani, J. C., Giráldez, M. I., & Rivera, M. B. (2019a). Source and geochemical partitioning of silver in a naturally-enriched soil. Applied Geochemistry, 103, 85–96.

    Article  Google Scholar 

  • Fernández-Caliani, J. C., Giráldez, M. I., & Barba-Brioso, C. (2019b). Oral bioaccessibility and human health risk assessment of trace elements in agricultural soils impacted by acid mine drainage. Chemosphere, 237, 124441.

    Article  Google Scholar 

  • Galán, E., Fernández-Caliani, J. C., González, I., Aparicio, P., & Romero, A. (2008). Influence of geological setting on geochemical baselines of trace elements in soils. Application to soils of South-West Spain. Journal of Geochemical Exploration, 98, 89–106.

    Article  Google Scholar 

  • Giráldez, M. I., Fernández-Caliani, J. C., & Rivera, M. B. (2020). Geochemical behavior and fate of trace elements in naturally contaminated soils under projected land-use changes. Journal of Soils and Sediments, 20, 1413–1423.

    Article  Google Scholar 

  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., Sansom, L., & Naidu, R. (2007). In vitro assessment of arsenic bioaccessibility in contaminated (anthropogenic and geogenic) soils. Chemosphere, 69, 69–78.

    Article  CAS  Google Scholar 

  • Juhasz, A. L., Weber, J., & Smith, E. (2011). Predicting arsenic relative bioavailability in contaminated soils using meta analysis and relative bioavailability-bioaccessibility regression models. Environmental Science & Technology, 45, 10676–10683.

    Article  CAS  Google Scholar 

  • Juhasz, A. L., Smith, E., Nelson, C., Thomas, D. J., & Bradham, K. (2014). Variability associated with As in vivo-in vitro correlations when using different bioaccessibility methodologies. Environmental Science & Technology, 48, 11646–11653.

    Article  CAS  Google Scholar 

  • Li, J., Wei, Y., Zhao, L., Zhang, J., Shangguan, Y., Li, F., & Hou, H. (2014). Bioaccessibility of antimony and arsenic in highly polluted soils of the mine area and health risk assessment associated with oral ingestion exposure. Ecotoxicology and Environmental Safety, 110, 308–315.

    Article  CAS  Google Scholar 

  • Li, J., Li, K., Cui, X. Y., Basta, N. T., Li, L. P., Li, H. B., & Ma, L. Q. (2015). In vitro bioaccessibility and in vivo relative bioavailability in 12 contaminated soils: Method comparison and method development. Science of the Total Environment, 532, 812–820.

    Article  CAS  Google Scholar 

  • Mehta, N., Cipullo, S., Cocerva, T., Coulon, F., Dino, G. A., Ajmone-Marsan, F., Padoan, E., Cox, S. F., Cave, M. R., & De Luca, D. A. (2020). Incorporating oral bioaccessibility into human health risk assessment due to potentially toxic elements in extractive waste and contaminated soils from an abandoned mine site. Chemosphere, 255, 126927.

    Article  CAS  Google Scholar 

  • Nathanail, C. P., & Smith, R. (2007). Incorporating bioaccessibility in detailed quantitative human health risk assessments. Journal of Environmental Science and Health, Part A, 42, 1193–1202.

    Article  CAS  Google Scholar 

  • Ng, J. C., Juhasz, A., Smith, E., & Naidu, R. (2015). Assessing the bioavailability and bioaccessibility of metals and metalloids. Environmental Science and Pollution Research, 22, 8802–8825.

    Article  Google Scholar 

  • Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., et al. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science & Technology, 36, 3326–3334.

    Article  CAS  Google Scholar 

  • Pascaud, G., Leveque, T., Soubrand, M., Boussen, S., Joussein, E., & Dumat, C. (2014). Environmental and health risk assessment of Pb, Zn, As and Sb in soccer field soils and sediments from mine tailings: solid speciation and bioaccessibility. Environmental Science and Pollution Research, 21, 4254–4264.

    Article  CAS  Google Scholar 

  • Pelfrêne, A., Waterlot, C., Mazzuca, M., Nisse, C., Bidar, G., & Douay, F. (2011). Assessing Cd, Pb, Zn human bioaccessibility in smelter-contaminated agricultural topsoils (northern France). Environmental Geochemistry and Health, 33, 477–493.

    Article  Google Scholar 

  • Rivas-Martínez, S., Penas, A., Del Río, S., Díaz-González, T. E., & Rivas-Sáenz, S. (2017). Bioclimatology of the Iberian Peninsula and the Balearic Islands. In: J. Loidi (Ed.), The Vegetation of the Iberian Peninsula (vol. 1, pp. 29–80). Springer.

  • Rivera, M. B., Fernández-Caliani, J. C., & Giráldez, M. I. (2015). Geoavailability of lithogenic trace elements of environmental concern and supergene enrichment in soils of the Sierra de Aracena Natural Park (SW Spain). Geoderma, 259–260, 164–173.

    Article  Google Scholar 

  • Rivera, M. B., Giráldez, M. I., & Fernández-Caliani, J. C. (2016). Assessing the environmental availability of heavy metals in geogenically contaminated soils of the Sierra de Aracena Natural Park (SW Spain). Is there a health risk? Science of the Total Environment, 560–561, 254–265.

    Article  Google Scholar 

  • Rodriguez, R. R., Basta, N. T., Casteel, S. W., & Pace, L. W. (1999). An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science & Technology, 33, 642–649.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Mosby, D. E., Casteel, S. W., Berti, W., Carpenter, M., Edwards, D., Cragin, D., & Chappell, W. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science & Technology, 33, 3697–3705.

    Article  CAS  Google Scholar 

  • USEPA (1989). Risk Assessment Guidance for Superfund. Vol. I, Human Health Evaluation Manual (Part A). U.S. Environmental Protection Agency, Washington, DC, EPA/540/1–89/002.

  • USEPA (2007). Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment. U.S. Environmental Protection Agency, Washington, DC, OSWER 9285.7–80.

  • USEPA (2011). Exposure Factors Handbook 2011 Edition. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F.

  • Tarazona, J. V., Fernández, M. D., & Vega, M. M. (2005). Regulation of contaminated soils in Spain. A new legal instrument. Journal of Soils and Sediments, 5, 121–124.

    Article  Google Scholar 

  • Wragg, J., Cave, M., Taylor, H., Basta, N., Brandon, E., Casteel, S., Gron, C., Oomen, A., & Van de Wiele, T. (2009). Inter-laboratory Trial of a Unified Bioaccessibility Procedure. British Geological Survey, Open Report OR/07/027.

  • Wragg, J., Cave, M., Basta, N., Brandon, E., Casteel, S., Denys, S., Gron, C., Oomen, A., Reimer, K., Tack, K., & Van de Wiele, T. (2011). An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Science of the Total Environment, 409, 4016–4030.

    CAS  Google Scholar 

  • Xia, Q., Peng, C., Lamb, D., Mallavarapu, M., Naidu, R., & Ng, J. C. (2016). Bioaccessibility of arsenic and cadmium assessed for in vitro bioaccessibility in spiked soils and their interaction during the Unified BARGE Method (UBM) extraction. Chemosphere, 147, 444–450.

    Article  CAS  Google Scholar 

  • Zhu, X., Li, M. Y., Chen, X. Q., Wang, J. Y., Li, L. Z., Tu, Ch., Luo, Y. M., Li, H. B., & Ma, L. Q. (2019). As, Cd, and Pb relative bioavailability in contaminated soils: Coupling mouse bioassay with UBM assay. Environment International, 130, 104875.

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Sandra Fernández-Landero (SFL)—Inmaculada Giráldez (IG)—Juan Carlos Fernández-Caliani (JCFC). JCFC and IG designed the present study. SFL and IG performed analyses and processed the data. JCFC and SFL wrote the manuscript. All authors contributed to the interpretation of the data and discussed their implications.

Corresponding author

Correspondence to Juan Carlos Fernández-Caliani.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Figure 1S

Schematic illustration of the gastric and gastrointestinal extraction procedures following the Unified BARGE Method. (PPTX 1480 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Landero, S., Giráldez, I. & Fernández-Caliani, J.C. Predicting the relative oral bioavailability of naturally occurring As, Cd and Pb from in vitro bioaccessibility measurement: implications for human soil ingestion exposure assessment. Environ Geochem Health 43, 4251–4264 (2021). https://doi.org/10.1007/s10653-021-00911-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00911-4

Keywords

Navigation