Skip to main content
Log in

An in-depth human health risk assessment of potentially toxic elements in highly polluted riverine soils, Příbram (Czech Republic)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Environmental pollution by potentially toxic element (PTE) and the associated health risks in humans are increasingly becoming a global challenge. The current study is an in-depth assessment of PTEs including the often studied lead (Pb), manganese (Mn), zinc (Zn), arsenic (As) and the less-studied titanium (Ti), rubidium (Rb), strontium (Sr), zirconium (Zr), barium (Ba) and thorium (Th) in highly polluted floodplain topsoil samples from the Litavka River, Czech Republic. Soil chemical properties including carbon (Cox) and reaction (pH_H2O) together with iron (Fe) were assessed in the same soils. A portable X-ray fluorescence spectrometer (p-XRFS) (Delta Premium) was used to measure the PTEs and Fe contents of the soils. Soil organic carbon and reaction pH were determined following routine laboratory procedures. The concentration level of each PTE was compared against world average and crustal values, with the majority of elements exceeding the aforementioned geochemical background levels. Distributions of the PTEs were mapped. Two pollution assessment indices including enrichment factor (EF) and pollution index (PI) levels were calculated and their means for Zn (43.36, 55.54), As (33.23, 43.59) and Pb (81.08, 103.21) show that these elements were enriched. Zn, As and Pb accounted for the high pollution load index (PLI) levels observed in the study. The EF and PI distribution maps corresponded with the concentration distribution maps for each PTE. On health risk assessment, hazard quotients (HQ) in different human groups varied. Children had the highest HQs for all PTEs than adults (women and men). PTEs with high HQ levels in distinct human groups were As, Zr and Pb. Zirconium is a less likely element to pose a health risk in humans. Nonetheless, it should be kept in check despite its low pollution occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abraham, J., Dowling, K., & Florentine, S. (2018). Assessment of potentially toxic metal contamination in the soils of a legacy mine site in Central Victoria, Australia. Chemosphere, 192, 122–132.

    Article  CAS  Google Scholar 

  • Bambas, J. (1990). Březohorský rudní revír (Ore district of Březové Hory). Publication of symposium on mining in Příbram scientific and technological aspects. VZ Kamenná Publications (in Czech).

  • Barać, N., Škrivanj, S., Bukumirić, Z., Živojinović, D., Manojlović, D., Barać, M., Petrović, R., & Ćorac, A. (2016). Distribution and mobility of heavy elements in floodplain agricultural soils along the Ibar River (Southern Serbia and Northern Kosovo). Chemometric investigation of pollutant sources and ecological risk assessment. Environmental Science and Pollution Research, 23(9), 9000–9011.

    Article  Google Scholar 

  • Borůvka, L., & Drábek, O. (2004). Heavy metal distribution between fractions of humic substances in heavily polluted soils. Plant, Soil and Environment, 50(8), 339–345.

    Article  Google Scholar 

  • Borůvka, L., & Vácha, R. (2006). Litavka river alluvium as a model area heavily polluted with potentially risk elements. In J.-L. Morel, G. Echevarria, & N. Goncharova (Eds.), Phytoremediation of metal-contaminated soils (pp. 267–298). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Borůvka, L., HuanWei, C., Kozák, J., & Krišstoufková, S. (1996). Heavy contamination of soil with cadmium, lead and zinc in the alluvium of the Litavka River. Rostlinna vyroba, 42(12), 543–550.

    Google Scholar 

  • Chai, L., Li, H., Yang, Z., Min, X., Liao, Q., Liu, Y., Men, S., Yan, Y., & Xu, J. (2017). Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: Distribution, contamination, and ecological risk assessment. Environmental Science and Pollution Research, 24(1), 874–885.

    Article  CAS  Google Scholar 

  • Choppala, G., Kunhikrishnan, A., Seshadri, B., Park, J. H., Bush, R., & Bolan, N. (2018). Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils. Journal of Geochemical Exploration, 184, 255–260.

    Article  CAS  Google Scholar 

  • Chrzan, A. (2016). Monitoring bioconcentration of potentially toxic trace elements in soils trophic chains. Environmental Earth Sciences, 75(9), 786.

    Article  Google Scholar 

  • Devai, I., Patrick, W. H., Jr., Neue, H. U., DeLaune, R. D., Kongchum, M., & Rinklebe, J. (2005). Methyl mercury and heavy metal content in soils of rivers Saale and Elbe (Germany). Analytical Letters, 38(6), 1037–1048.

    Article  CAS  Google Scholar 

  • Dlouhá, Š, Petrovský, E., Kapička, A., Borůvka, L., Ash, C., & Drábek, O. (2013). Investigation of polluted alluvial soils by magnetic susceptibility methods: A case study of the Litavka River. Soil and Water Research, 8, 151–157.

    Article  Google Scholar 

  • Edmonds, J. S., & Francesconi, K. A. (1993). Arsenic in seafoods: Human health aspects and regulations. Marine Pollution Bulletin, 26(12), 665–674.

    Article  CAS  Google Scholar 

  • Egli, M., & Fitze, P. (2000). Formulation of pedologic mass balance based on immobile elements: A revision. Soil Science, 165(5), 437–443.

    Article  CAS  Google Scholar 

  • EPA Region 9. (2008). Risk Assessment Issue Paper for: Derivation of interim oral and inhalation toxicity values for titanium (CAS No. 7440‐32‐6) and compounds, especially titanium dioxide (CAS No. 13463‐67‐7), but excluding titanium tetrachloride (CAS No. 7550‐45‐0_, titanium dichloride and organic complexes of titanium such as titanocenes. DRAFT document; 95‐019/05‐26‐95).

  • EPA. (2019). Regional screening levels (RSLs)—Generic tables. Retrieved from March 18, 2020 from https://semspub.epa.gov/work/HQ/197025.pdf.

  • Ettler, V., Johan, Z., Baronnet, A., Jankovský, F., Gilles, Ch., Mihaljevič, M., Šebek, O., Strnad, L., & Bezdička, P. (2005). Mineralogy of air-pollution-control residues from a secondary lead smelter: Environmental implications. Environmental Science and Technology., 39, 9309–9316.

    Article  CAS  Google Scholar 

  • Ettler, V., Mihaljevič, M., Šebek, O., Molek, M., Grygar, T., & Zeman, J. (2006). Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Příbram, Czech Republic. Environmental Pollution., 142, 409–417.

    Article  CAS  Google Scholar 

  • Ettler, V., Vaněk, A., Mihaljevič, M., & Bezdička, P. (2005). Contrasting lead speciation in forest and tilled soils heavily polluted by lead metallurgy. Chemosphere, 58(10), 1449–1459.

    Article  CAS  Google Scholar 

  • Ettler, V., Tejnecký, V., Mihaljevič, M., Šebek, O., Zuna, M., & Vaněk, A. (2010). Antimony mobility in lead smelter-polluted soils. Geoderma, 155(3–4), 409–418.

    Article  CAS  Google Scholar 

  • Eze, P. N., Mosokomani, V. S., Udeigwe, T. K., & Oyedele, O. F. (2016). Quantitative geospatial dataset on the near-surface heavy metal concentrations in semi-arid soils from Maibele Airstrip North, Central Botswana. Data in Brief, 8, 1448–1453.

    Article  Google Scholar 

  • Fan, S., Wang, X., Lei, J., Ran, Q., Ren, Y., & Zhou, J. (2019). Spatial distribution and source identification of heavy metals in a typical Pb/Zn smelter in an arid area of northwest China. Human and Ecological Risk Assessment: An International Journal, 25(7), 1661–1687.

    Article  CAS  Google Scholar 

  • Frohne, T., Rinklebe, J., & Diaz-Bone, R. A. (2014). Contamination of floodplain soils along the Wupper River, Germany, with As Co, Cu, Ni, Sb, and Zn and the impact of pre-definite redox variations on the mobility of these elements. Soil and Sediment Contamination: An International Journal, 23(7), 779–799.

    Article  CAS  Google Scholar 

  • Garcia-Miragaya, J., & Page, A. L. (1978). Sorption of trace quantities of Cd by soils with different chemical and mineralogical composition. Water, Air and Soil Pollution, 9, 289–299.

    Article  CAS  Google Scholar 

  • Ge, M., Liu, G., Liu, H., Yuan, Z., & Liu, Y. (2019). The distributions, contamination status, and health risk assessments of mercury and arsenic in the soils from the Yellow River Delta of China. Environmental Science and Pollution Research, 26(34), 35094–35106.

    Article  CAS  Google Scholar 

  • Gholizadeh, A., Borůvka, L., Vašát, R., Saberioon, M., Klement, A., Kratina, J., Tejnecký, V., & Drábek, O. (2015). Estimation of potentially toxic elements contamination in anthropogenic soils on a brown coal mining dumpsite by reflectance spectroscopy: A case study. PLoS ONE, 10(2), e0117457.

    Article  Google Scholar 

  • Gray, C. W., & Mclaren, R. G. (2006). Soil factors affecting heavy metal solubility in some New Zealand soils. Water, Air, and Soil Pollution, 175(1–4), 3–14.

    Article  CAS  Google Scholar 

  • Hampton, J. O., Laidlaw, M., Buenz, E., & Arnemo, J. M. (2018). Heads in the sand: Public health and ecological risks of lead-based bullets for wildlife shooting in Australia. Wildlife Research, 45(4), 287–306.

    Article  Google Scholar 

  • Horbe, A. M. C., & Anand, R. R. (2011). Bauxite on igneous rocks from Amazonia and Southwestern of Australia: Implication for weathering process. Journal of Geochemical Exploration, 111(1–2), 1–12.

    Article  CAS  Google Scholar 

  • Jadoona, S., Muhammad, S., Hilal, Z., Ali, M., Khan, S., & Khattak, N. U. (2020). Spatial distribution of potentially toxic elements in urban soils of Abbottabad city, (N Pakistan): Evaluation for potential risk. Microchemical Journal, 153, 104489.

    Article  Google Scholar 

  • Jalali, M., & Najafi, S. (2018). Effect of pH on potentially toxic trace elements (Cd, Cu, Ni, and Zn) solubility in two native and spiked calcareous soils: experimental and modeling. Communications in Soil Science and Plant Analysis, 49(7), 814–827.

    Article  CAS  Google Scholar 

  • Jiménez-Ballesta, R., Garcia-Navarro, F. J., Bravo, S., Amorós, J. A., Perez-de-Los-Reyes, C., & Mejias, M. (2017). Environmental assessment of potential toxic trace element contents in the inundated floodplain area of Tablas de Daimiel wetland (Spain). Environmental Geochemistry and Health, 39(5), 1159–1177.

    Article  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed., pp. 33487–32742). CRC Press.

  • Kadirvel, R., Sundaram, K., Mani, S., Samuel, S., Elango, N., & Panneerselvam, C. (2007). Supplementation of ascorbic acid and αtocopherol prevents arsenic-induced protein oxidation and DNA damage induced by arsenic in rats. Human and Experimental Toxicology, 26, 939–946.

    Article  CAS  Google Scholar 

  • Kebonye, N. M., & Eze, P. N. (2019). Zirconium as a suitable reference element for estimating potentially toxic element enrichment in treated wastewater discharge vicinity. Environmental Monitoring and Assessment, 191(11), 705.

    Article  CAS  Google Scholar 

  • Kebonye, N. M., Eze, P. N., Ahado, S. K., & John, K. (2020). Structural equation modeling of the interactions between trace elements and soil organic matter in semiarid soils. International Journal of Environmental Science and Technology, 17, 2205–2214.

    Article  CAS  Google Scholar 

  • Kotková, K., Nováková, T., Tůmová, Š, Kiss, T., Popelka, J., & Faměra, M. (2019). Migration of risk elements within the floodplain of the Litavka River, the Czech Republic. Geomorphology, 329, 46–57.

    Article  Google Scholar 

  • Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environmental Geochemistry and Health, 40(6), 2395–2420.

    Article  CAS  Google Scholar 

  • Kozák, J., Janků, J., & Jehlička, J. (1995). The problems of heavily polluted soils in the Czech Republic: A case study. In U. Förstner, W. Salomons, & P. Mader (Eds.), Heavy metals (pp. 287–300). Springer.

  • Langen, M., & Hoberg, H. (1995). A description of the distribution of heavy metals in soils and sediments containing iron oxides and consequences for the decontamination process. In W. J. Van Den Brink, R. Bosman, & F. Arendt (Eds.), Contaminated Soil’95 (pp. 513–514). Springer.

  • Li, S. W., Li, M. Y., Sun, H. J., Li, H. B., & Ma, L. Q. (2020). Lead bioavailability in different fractions of mining-and smelting-contaminated soils based on a sequential extraction and mouse kidney model. Environmental Pollution, 262, 114253.

    Article  CAS  Google Scholar 

  • Liu, L., Li, W., Song, W., & Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 633, 206–219.

    Article  CAS  Google Scholar 

  • Londo, A. J., Kushla, J. D., & Carter, R. C. (2006). Soil pH and tree species suitability in the south. Southern Regional Extension Forestry, 2, 1–5.

    Google Scholar 

  • Maina, D. M., Ndirangu, D. M., Mangala, M. M., Boman, J., Shepherd, K., & Gatari, M. J. (2016). Environmental implications of high metal content in soils of a titanium mining zone in Kenya. Environmental Science and Pollution Research, 23(21), 21431–21440.

    Article  CAS  Google Scholar 

  • Malkoc, S., Yazıcı, B., & Savas Koparal, A. (2010). Assessment of the levels of heavy metal pollution in roadside soils of Eskisehir, Turkey. Environmental Toxicology and Chemistry, 29(12), 2720–2725.

    Article  CAS  Google Scholar 

  • Mandal, P. (2017). An insight of environmental contamination of arsenic on animal health. Emerging Contaminants, 3(1), 17–22.

    Article  Google Scholar 

  • McLean, J.E., & Bledsoe, B.E. (1992). Behavior of metals in soils. Ground water issue. United States Environmental Protection Agency, Office of Solid Waste and Emergency Response. Washington, DC. EPA/540/S-92/018.

  • Mensah, A. K., Marschner, B., Shaheen, S. M., Wang, J., Wang, S. L., & Rinklebe, J. (2020). Arsenic contamination in abandoned and active gold mine spoils in Ghana: Geochemical fractionation, speciation, and assessment of the potential human health risk. Environmental Pollution, 261, 114116.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, S., Chakraborty, S., Bhadoria, P. B. S., Li, B., & Weindorf, D. C. (2020). Assessment of heavy metal and soil organic carbon by portable X-ray fluorescence spectrometry and NixPro™ sensor in landfill soils of India. Geoderma Regional, 20, e00249.

    Article  Google Scholar 

  • Navrátil, T., Rohovec, J., & Žák, K. (2008). Floodplain sediments of the 2002 catastrophic flood at the Vltava (Moldau) River and its tributaries: mineralogy, chemical composition, and post-sedimentary evolution. Environmental Geology, 56(2), 399–412.

    Article  Google Scholar 

  • Nováková, T., Kotková, K., Elznicová, J., Strnad, L., Engel, Z., & Grygar, T. M. (2015). Pollutant dispersal and stability in a severely polluted floodplain: A case study in the Litavka River, Czech Republic. Journal of Geochemical Exploration, 156, 131–144.

    Article  Google Scholar 

  • Ogundiran, M. B., & Osibanjo, O. (2009). Mobility and speciation of heavy metals in soils impacted by hazardous waste. Chemical Speciation and Bioavailability, 21(2), 59–69.

    Article  CAS  Google Scholar 

  • Paulette, L., Man, T., Weindorf, D. C., & Person, T. (2015). Rapid assessment of soil and contaminant variability via portable X-ray fluorescence spectroscopy: Copşa Mică, Romania. Geoderma, 243, 130–140.

    Article  Google Scholar 

  • R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Retrieved from https://www.r-project.org/. (Verified on 13 May 2020).

  • Ravansari, R., Wilson, S. C., & Tighe, M. (2020). Portable X-ray fluorescence for environmental assessment of soils: Not just a point and shoot method. Environment International, 134, 105250.

    Article  CAS  Google Scholar 

  • Rieuwerts, J. S., Thornton, I., Farago, M. E., & Ashmore, M. R. (1998). Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation and Bioavailability, 10(2), 61–75.

    Article  CAS  Google Scholar 

  • Rinklebe, J., & Langer, U. (2008). Floodplain soils at the Elbe River, Germany, and their diverse microbial biomass. Archives of Agronomy and Soil Science, 54(3), 259–273.

    Article  CAS  Google Scholar 

  • Rinklebe, J., Antoniadis, V., Shaheen, S. M., Rosche, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment International, 126, 76–88.

    Article  CAS  Google Scholar 

  • Romero-Baena, A. J., González, I., & Galán, E. (2018). Soil pollution by mining activities in Andalusia (South Spain) – the role of mineralogy and geochemistry in three case studies. Journal of Soils and Sediments, 18(6), 2231–2247.

    Article  CAS  Google Scholar 

  • Sayadi, M. H., Shabani, M., & Ahmadpour, N. (2015). Pollution index and ecological risk of heavy metals in the surface soils of Amir-Abad Area in Birjand City. Iran. Health Scope, 4(1), ee21137.

    Google Scholar 

  • Scokart, P. O., Meeus-verdinne, K., & De Borger, R. (1983). Mobility of heavy metals in polluted soils near zinc smelters. Water, Air and Soil Pollution, 20, 451–463.

    Article  CAS  Google Scholar 

  • Séguin, V., Gagnon, C., & Courchesne, F. (2004). Changes in water extractable metals, pH and organic carbon concentrations at the soil–root interface of forested soils. Plant and Soil, 260(1–2), 1–17.

    Article  Google Scholar 

  • Shaheen, S. M., & Rinklebe, J. (2015). Impact of emerging and low cost alternative amendments on the (im) mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil. Ecological Engineering, 74, 319–326.

    Article  Google Scholar 

  • Simonin, M., Richaume, A., Guyonnet, J. P., Dubost, A., Martins, J. M., & Pommier, T. (2016). Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Scientific Reports, 6(1), 1–10.

    Article  Google Scholar 

  • Timofeeva, Y. O., Kosheleva, Y., Semal, V., & Burdukovskii, M. (2018). Origin, baseline contents, and vertical distribution of selected trace lithophile elements in soils from nature reserves, Russian Far East. Journal of Soils and Sediments, 18(3), 968–982.

    Article  CAS  Google Scholar 

  • Tremlová, J., Sehnal, M., Száková, J., Goessler, W., Steiner, O., Najmanová, J., Horáková, T., & Tlustoš, P. (2017). A profile of arsenic species in different vegetables growing in arsenic-contaminated soils. Archives of Agronomy and Soil Science, 63(7), 918–927.

    Article  Google Scholar 

  • Trivedi, P., & Axe, L. (2000). Modeling Cd and Zn sorption to hydrous metal oxides. Environmental Science and Technology, 34(11), 2215–2223.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Bannon, D., Nakanishi, H., McBride, M. B., Williams, M. A., & Yoshihara, T. (2020). Chemical speciation, plant uptake, and toxicity of heavy metals in agricultural soils. Journal of Agricultural and Food Chemistry, 68, 12856–12869.

    Article  CAS  Google Scholar 

  • Van Nguyen, T., Ozaki, A., Nguyen Tho, H., Nguyen Duc, A., Tran Thi, Y., & Kurosawa, K. (2016). Arsenic and heavy metal contamination in soils under different land use in an estuary in Northern Vietnam. International Journal of Environmental Research and Public Health, 13(11), 1091.

    Article  Google Scholar 

  • Vaněk, A., Borůvka, L., Drábek, O., Mihaljevič, M., & Komárek, M. (2005). Mobility of lead, zinc and cadmium in alluvial soils heavily polluted by smelting industry. Plant, Soil and Environment, 51(7), 316–321.

    Article  Google Scholar 

  • Vaněk, A., Ettler, V., Grygar, T., Borůvka, L., Šebek, O., & Drábek, O. (2008). Combined chemical and mineralogical evidence for heavy metal binding in mining-and smelting-affected alluvial soils. Pedosphere, 18(4), 464–478.

    Article  Google Scholar 

  • Vácha, R., Sáňka, M., Skála, J., Čechmánková, J., & Horváthová, V. (2016). Soil contamination health risks in Czech proposal of soil protection legislation. In M. L. Larramendy & S. Soloneski (Eds.), Environmental health risk (1st ed., pp. 57–75). InTech.

  • Vetrimurugan, E., Brindha, K., Elango, L., & Ndwandwe, O. M. (2017). Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta. Applied Water Science, 7(6), 3267–3280.

    Article  CAS  Google Scholar 

  • Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10(3), 268–292.

    Article  Google Scholar 

  • Vurm, K. (2001). Dějiny příbramské hutě 1311–2000 (History of the Příbram Smelter 1311–2000). Příbram, Czech Republic. (in Czech).

  • Wang, X., Cheng, G., Zhong, X., & Li, M. H. (2009). Trace elements in sub-alpine forest soils on the eastern edge of the Tibetan Plateau, China. Environmental Geology, 58(3), 635–643.

    Article  CAS  Google Scholar 

  • World Health Organization (WHO). (2020). Arsenic. Retrieved April 23, 2020 from https://www.who.int/news-room/fact-sheets/detail/arsenic.

  • Zhang, Y., Hou, D., O’Connor, D., Shen, Z., Shi, P., Ok, Y. S., Tsang, D. C., Wen, Y., & Luo, M. (2019). Lead contamination in Chinese surface soils: Source identification, spatial-temporal distribution and associated health risks. Critical Reviews in Environmental Science and Technology, 49(15), 1386–1423.

    Article  CAS  Google Scholar 

  • Zhou, T., Wu, L., Luo, Y., & Christie, P. (2018). Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils. Environmental Pollution, 232, 514–522.

    Article  CAS  Google Scholar 

  • Žák, K., Rohovec, J., & Navrátil, T. (2009). Fluxes of heavy metals from a highly polluted watershed during flood events: a case study of the Litavka River, Czech Republic. Water, Air and Soil Pollution., 203(1–4), 343–358.

    Article  Google Scholar 

Download references

Acknowledgements

The first author, Mr. Ndiye M. Kebonye, would like to acknowledge the Ph.D. scholarship and internal grant no. SV20-5-21130 offered by the Czech University of Life Sciences, Prague (CZU). Also, we thank the Czech Science Foundation, Project nos. 17–277265 (Spatial prediction of soil properties and classes based on position in the landscape and other environmental covariates) and 18–28126Y (Soil contamination assessment using hyperspectral orbital data) for the financial support. Moreover the Centre of Excellence (Centre of the investigation of synthesis and transformation of nutritional substances in the food chain in interaction with potentially risk substances of anthropogenic origin: comprehensive assessment of the soil contamination risks for the quality of agricultural products, NutRisk Centre), European project no. CZ.02.1.01/0.0/0.0/16_019/0000845 highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ndiye M. Kebonye.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest regarding this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 3603 KB)

Supplementary file 2 (XLSX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kebonye, N.M., Eze, P.N., John, K. et al. An in-depth human health risk assessment of potentially toxic elements in highly polluted riverine soils, Příbram (Czech Republic). Environ Geochem Health 44, 369–385 (2022). https://doi.org/10.1007/s10653-021-00877-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00877-3

Keywords

Navigation