Skip to main content

Advertisement

Log in

Geochemical and mineralogical assessment of sedimentary limestone mine waste and potential for mineral carbonation

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

This paper attempts to evaluate the mineralogical and chemical composition of sedimentary limestone mine waste alongside its mineral carbonation potential. The limestone mine wastes were recovered as the waste materials after mining and crushing processes and were analyzed for mineral, major and trace metal elements. The major mineral composition discovered was calcite (CaCO3) and dolomite [CaMg(CO3)2], alongside other minerals such as bustamite [(Ca,Mn)SiO3] and akermanite (Ca2MgSi2O7). Calcium oxide constituted the greatest composition of major oxide components of between 72 and 82%. The presence of CaO facilitated the transformation of carbon dioxide into carbonate form, suggesting potential mineral carbonation of the mine waste material. Geochemical assessment indicated that mean metal(loid) concentrations were found in the order of Al > Fe > Sr > Pb > Mn > Zn > As > Cd > Cu > Ni > Cr > Co in which Cd, Pb and As exceeded some regulatory guideline values. Ecological risk assessment demonstrated that the mine wastes were majorly influenced by Cd as being classified having moderate risk. Geochemical indices depicted that Cd was moderately accumulated and highly enriched in some of the mine waste deposited areas. In conclusion, the limestone mine waste material has the potential for sequestering CO2; however, the presence of some trace metals could be another important aspect that needs to be considered. Therefore, it has been shown that limestone mine waste can be regarded as a valuable feedstock for mineral carbonation process. Despite this, the presence of metal(loid) elements should be of another concern to minimize potential ecological implication due to recovery of this waste material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamu, C. I., Nganje, T. N., & Edet, A. (2015). Major and trace elements pollution of sediments associated with Abandoned Barite Mines in parts of Oban Massif and Mamfe Embayment, SE Nigeria. Journal of Geochemical Exploration, 151, 17–33.

    Article  CAS  Google Scholar 

  • Al-Farraj, A. S. (2011). Mineralogical composition of limestone rock and soil from Jubaila formation. Asian Journal of Earth Sciences, 4, 203–213.

    Article  CAS  Google Scholar 

  • Al-Khashman, O. A., & Shawabkeh, R. A. (2006). Metals distribution in soils around the cement factory in southern Jordan. Environmental Pollution, 140(3), 387–394.

    Article  CAS  Google Scholar 

  • Álvarez, R., Ordóñez, R., Pérez, A., Miguel, E. D., & Charlesworth, S. (2018). Mineralogical and environmental features of the asturian copper mining district (Spain): A review. Engineering Geology, 243, 206–217.

    Article  Google Scholar 

  • Ashraf, W. (2016). Carbonation of cement-based materials: Challenges and opportunities. Construction and Building Materials, 120, 558–570.

    Article  CAS  Google Scholar 

  • Awang, N.H.C. (2018) Assessment of the Composition of Major and Trace Elements in Rock, Soil and Sediment of Selinsing Gold Mining Area. Bachelor thesis, Universiti Putra Malaysia, Serdang Selangor, Malaysia.

  • Azdarpour, A., Karaei, M. A., Hamidi, H., Mohammadian, E., & Honarvar, B. (2018). CO2 sequestration through direct aqueous mineral carbonation of red gypsum. Petroleum, 4(4), 398–407.

    Article  Google Scholar 

  • Aziz, H. A., Adlan, M. N., & Ariffin, K. S. (2008). Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: Post treatment by high quality limestone. Bioresource Technology, 99, 1578–1583.

    Article  CAS  Google Scholar 

  • Bakhshipouri, Z., Omar, H., Yousof, Z. B. M., & Ghiasi, B. (2009). An overview of subsurface karst features associated with geological studies in Malaysia. Electronic Journal of Geotechnical Engineering, 14, 1–15.

    Google Scholar 

  • Baykasoglu, A., Gullu, H., Canakcı, H., & Ozbakır, L. (2008). Prediction of compressive and tensile strength of limestone via genetic programming. Expert Systems with Applications, 35, 111–123.

    Article  Google Scholar 

  • Chen, Y., Jiang, X., Wang, Y., & Zhuang, D. (2018). Spatial characteristics of heavy metal pollution and the potential ecological risk of a typical mining area: A case study in China. Process Safety and Environmental Protection, 113, 204–219.

    Article  CAS  Google Scholar 

  • Cheng, H., Huang, L., Ma, P., & Shi, Y. (2019). Ecological risk and restoration measures relating to heavy metal pollution in industrial and mining wastelands. International Journal of Environmental Research and Public Health, 16(20), 3985.

    Article  CAS  Google Scholar 

  • Cotton, A., Patchigolla, K., & Oakey, J. E. (2014). Minor and trace element emissions from post-combustion CO2 capture from coal: Experimental and equilibrium calculations. Fuel, 117, 391–407.

    Article  CAS  Google Scholar 

  • Diami, S. M., Kusin, F. M., & Madzin, Z. (2016). Potential ecological and human health risk of heavy metals in surface soils associated with iron ore mining in Pahang. Malaysia. Environmental Science and Pollution Research, 23, 21086–21097.

    Article  CAS  Google Scholar 

  • Dokmeci, A. H., Ongen, A., & Dagdeviren, S. (2009). Environmental toxicity of Cadmium and health effect. Journal of Environmental Protection and Ecology, 10, 84–93.

    CAS  Google Scholar 

  • Elias, M. S., Ibrahim, S., Samuding, K., Ab Rahman, S., & Hashim, A. (2018). The sources and ecological risk assessment of elemental pollution in sediment of Linggi estuary, Malaysia. Marine Pollution Bulletin, 137, 646–655.

    Article  CAS  Google Scholar 

  • Forbes, V. E., & Galic, N. (2016). Next-generation ecological risk assessment: Predicting risk from molecular initiation to ecosystem service delivery. Environment International, 91, 215–219.

    Article  CAS  Google Scholar 

  • Gałuszka, A., Migaszewski, Z. M., Dołęgowska, S., & Michalik, A. (2018). Geochemical anomalies of trace elements in unremediated soils of Mt. Karczówka, a historic lead mining area in the city of Kielce, Poland. Science of the Total Environment , 639, 397–405.

    Article  Google Scholar 

  • Goh, E., Effendi, S. (2017) Overview of an effective governance policy for mineral resource sustainability in Malaysia. Resources Policy, 52, 1–6.

    Article  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sediment ecological approach. Water Research, 14, 975–1001.

    Article  Google Scholar 

  • Han, D. R., Namkung, H., Lee, H. M., Huh, D. G., & Kim, H. T. (2015). CO2 sequestration by aqueous mineral carbonation of limestone in a supercritical reactor. Journal of Industrial and Engineering Chemistry, 21, 792–796.

    Article  CAS  Google Scholar 

  • Hasan, S. N. M. S., Kusin, F. M., Shamshuddin, J., & Yusuff, F. M. (2018). Potential of soil, sludge and sediment for mineral carbonation process in Selinsing gold mine, Malaysia. Minerals,, 8, 257.

    Article  Google Scholar 

  • Hasan, S. N. M. S., & Kusin, F. M. (2018). Potential of mining waste from metallic mineral industry for carbon sequestration. IOP Conference Series: Materials Science and Engineering, 458, 012013.

    Article  Google Scholar 

  • Hasan, S. N. M. S., Kusin, F. M., Jusop, S., & Mohamat-Yusuff, F. (2019). The mineralogy and chemical properties of sedimentary waste rocks with carbon sequestration potential at Selinsing Gold Mine, Pahang. Pertanika Journal of Science & Technology , 27(2), 1005–1012.

    Google Scholar 

  • Hitch, M., Ballantyne, S. M., & Hindle, S. R. (2009). Revaluing mine waste rock for carbon capture and storage. International Journal of Mining, Reclamation and Environment, 24, 64–79.

    Article  Google Scholar 

  • Kalasovà, D., Dvořàk, K., Slobodník, M., Všiansky´, D., Zikmund, T., Dluhoš, J., Rostislav Vánă, R., Bureš, J., & Kaiser, J. (2018). Characterization of inner structure of limestone by X-ray computed sub-micron tomography. Construction and Building Materials, 174, 693–700.

    Article  Google Scholar 

  • Knutsen, H. K., Amlund, H., Brantsæter, A. L., Engeset, D., Fæste, C. K., Holene, E., et al. (2015). Risk assessment of dietary Cadmium exposure in the Norwegian population. European Journal of Nutrition & Food Safety, 8, 157–161.

    Article  Google Scholar 

  • Kusin, F. M., Rahman, M. S. A., Madzin, Z., Jusop, S., Yusuff, F. M., Ariffin, M., & Zahar, M. S. M. (2017). The occurrence and potential ecological risk assessment of bauxite mine-impacted water and sediments in Kuantan, Pahang, Malaysia. Environmental Science and Pollution Research, 24, 1306–1321.

    Article  CAS  Google Scholar 

  • Kusin, F. M., Azani, N. N. M., Hasan, S. N. M. S., & Sulong, N. A. (2018). Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. CATENA, 165, 454–464.

    Article  CAS  Google Scholar 

  • Kusin, F. M., Awang, N. H. C., Hasan, S. N. M. S., Rahim, H. A. A., Jusop, S., & Kim, K. W. (2019). Geoecological evaluation of mineral, major and trace elemental composition in waste rocks, soils and sediments of a gold mining area and potential associated risks. CATENA, 183, 104229.

    Article  CAS  Google Scholar 

  • Kusin, F. M., Hasan, S. N. M. S., Hassim, M. A., & Molahid, V. L. M. (2020). Mineral carbonation of sedimentary mine waste for carbon sequestration and potential reutilization as cementitious material. Environmental Science and Pollution Research, 27, 12767–12780.

    Article  CAS  Google Scholar 

  • Lee, M. G., Jang, Y. N., Ryu, K. W., Kim, W., & Bang, J. H. (2012). Mineral carbonation of flue gas desulfurization gypsum for CO2 sequestration. Energy, 47(1), 370–377.

    Article  CAS  Google Scholar 

  • Li, P., Pan, S.-Y., Pei, S., Lin, Y. J., & Chiang, P. C. (2016). Challenges and perspectives on carbon fixation and utilization technologies: An overview. Aerosol and Air Quality Research, 16, 1327–1344.

    Article  CAS  Google Scholar 

  • Lyana, N. K., Hareyani, Z., Kamar Shah, A., & Mohd. Hazizan, M. H. . (2016). Effect of geological condition on degree of fragmentation in a Simpang Pulai Marble Quarry. Science Direct, 19, 694–701.

    Google Scholar 

  • Mandeng, E. P. B., Bidjeck, L. M. B., Bessa, A. Z. E., Ntomb, Y. D., Wadjou, J. W., Doumo, E. P. E., & Dieudonne, L. B. (2019). Contamination and risk assessment of heavy metals, and uranium of sediments in two watersheds in Abiete-Toko gold district. Southern Cameroon. Heliyon,, 5(10), e02591.

    Article  Google Scholar 

  • Mamat, Z., Haximu, S., Zhang, Z., & Aji, R. (2016). An ecological risk assessment of heavy metal contamination in the surface sediments of Bosten Lake, northwest China. Environmental Science and Pollution Research, 23, 7255–7265.

    Article  CAS  Google Scholar 

  • Manning, D. A. C., Renforth, P., Lopez-Capel, E., Robertson, S., & Ghazireh, N. (2013). Carbonate precipitation in artificial soils produced from basaltic quarry fines and composts: an opportunity for passive carbon sequestration. International Journal of Greenhouse Gas Control 17, 309–317.

    Article  CAS  Google Scholar 

  • Manoj, K., & Padhy, P. K. (2014). Distribution, enrichment and ecological risk assessment of six elements in bed sediments of a Tropical River, Chottanagpur Plateau: A spatial and temporal appraisal. Journal of Environmental Protection, 5, 1419–1434.

    Article  Google Scholar 

  • Moyle, P. R., & Causey, J. D. (2001). Chemical Composition of Samples Collected from Waste Rock Dumps and Other Mining-Related Features at Selected Phosphate Mines in Southeastern Idaho, Western Wyoming, and Northern Utah (pp. 1–46). US Geological Survey: Idaho; Wyoming; Utah, United States.

    Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Mulwa, B. M., Maina, D. M., & Patel, J. P. (2012). Multielemental analysis of limestone and soil samples of Kitui South (Kenya) limestone deposits. International Journal of Fundamental Physical Sciences , 2(4), 48–51.

    Article  Google Scholar 

  • Oliveira, L. R., Cunha, H. P., Silva, N. M., Pádua, P. M. (2013). Chemical and mineralogical characterization and soil reactivity of Brazilian Waste Limestones. APCBEE Procedia, 9, 8–12.

    Article  Google Scholar 

  • Pan, Y., & Li, H. (2016). Investigating heavy metal pollution in mining Brownfield and its policy implications: A case study of the Bayan Obo Rare Earth Mine, Inner Mongolia, China. Environmental Management , 57, 879–893.

    Article  Google Scholar 

  • Peter, T. S., Chandrasekar, N., Wilson, J. S. J., Selvakumar, S., Krishnakumar, S., & Mages, N. S. A. (2017). baseline record of trace elements concentration along the beach placer mining areas of Kanyakumari coast, South India. Marine Pollution Bulletin, 119, 416–422.

    Article  CAS  Google Scholar 

  • Phang, C. H.; Jalal, A. A.; Norashid, J. (2004) Firing of Limestone in JPN Pilot Plant. The 4th Annual Seminar of National Science Fellowship.

  • Qin, L., Gao, X., & Chen, T. (2019). Influence of mineral admixtures on carbonation curing of cement paste. Construction and Building Materials, 212, 653–662.

    Article  CAS  Google Scholar 

  • Rahim, S. A., Rahman, Z. A., Gasim, M. B., Idris, W. M. R., & Tan, M. M. (2008). Major elements and heavy metal composition of soils sorrounding limestone hills in Perlis. Sains Malaysiana, 37, 341–350.

    CAS  Google Scholar 

  • Rashid, R. A., Shamsuddin, R., Hamid, M. A. A., & Jalar, A. (2013). In-vitro bioactivity of wollastonite materials derived from limestone and silica sand. Ceramic International, 40, 6847–6853.

    Article  Google Scholar 

  • Rashid, R. A., Shamsudin, R., Hamid, M. A. A., & Jalar, A. (2014). Low temperature production of wollastonite from limestone and silica sand through solidstate reaction. Journal of Asian Ceramic Societies, 2, 77–81.

    Article  Google Scholar 

  • Shamshuddin, J. (2011) Methods in Soil Mineralogy; Universiti Putra Malaysia Press: Serdang, Malaysia, pp. 14–42, ISBN 978-967-344-198-3.

  • Singovszka, E., & Balintova, M. (2014). Pollution and potential ecological risk assessment of heavy metals in the Smolnik Creek (Slovakia). Chemical Engineering Transactions, 39, 1759–1764.

    Google Scholar 

  • Smith, K. S., & Huyck, H. L. (1999). An overview of the abundance, relative mobility, bioavailability, and human toxicity of metals. The Environmental Geochemistry of Mineral Deposits, 6, 29–70.

    Google Scholar 

  • Sofianska, E.; Michailidis, K. (2016) Assessment of heavy metals contamination and potential ecological risk in soils affected by a former Mn Mining Activity, Drama District, Northern Greece. Soil and Sed. Cont.: An Int. J., 25, 3.

  • Sun, R., Li, Y., Wu, S., Liu, C., Liu, H., & Lu, C. (2013). Enhancement of CO2 capture capacity by modifying limestone with propionic acid. Powder Technology, 233, 8–14.

    Article  CAS  Google Scholar 

  • Wang, N., Wang, A., Kong, L., & He, M. (2018). Calculation and application of Sb toxicity coefficient for potential ecological risk assessment. Science of the Total Environment, 610–611, 167–174.

    Article  Google Scholar 

  • Wartchow, R. (1989). Datensammlung nach der ”Learnt profile”–Methode (LP) für Calcit und Vergleich mit der ”Background peak background”–Methode(BPB). Zeitschrift Fur Kristallographie, 186(1989), 300–302.

    Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Ingerson Lecture, 59, 1217–1232.

    CAS  Google Scholar 

  • Xie, H., Yue, H., Zhu, J., Liang, B., Li, C., Wang, Y., et al. (2015). Scientific and engineering progress in CO2 mineralization using industrial waste and natural minerals. Engineering, 1, 150–157.

    Article  CAS  Google Scholar 

  • Yahya, Z., Ariffin, M., & Abdullah, S. (2018). Legislative analysis on quarry rehabilitation in Selangor, Malaysia. Resources Policy, 55, 1–8.

    Article  Google Scholar 

  • Yeap, B. (1993). Tin and gold mineralizations in Peninsular Malaysia and their relationships to the tectonic development. Journal of Southeast Asian Earth Sciences, 8(1–4), 329–348.

    Article  Google Scholar 

  • Zabidi, H., Termizi, M., Aliman, S., Ariffin, K. S., & Khalil, N. L. (2016). Geological structure and geomorphological aspects in Karstified susceptibility mapping of limestone formations. Procedia Chemistry, 19, 659–665.

    Article  Google Scholar 

  • Zhang, Y., Sun, Q., & Geng, J. (2017). Microstructural characterization of limestone exposed to heat with XRD, SEM and TG-DSC. Materials Characterization, 134, 285–295.

    Article  CAS  Google Scholar 

  • Zhu, H., Yuan, X. Z., Zeng, G. M., Jiang, M., Liang, J., Zhang, C., et al. (2012). Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index. Transaction of Nonferrous Metals Society of China, 22, 1470–1477.

    Article  CAS  Google Scholar 

  • Zupančič, N., Turniški, R., Miler, M., & Grčman, H. (2018). Geochemical fingerprint of insoluble material in soil on different limestone formations. CATENA, 170, 10–24.

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported through the grant no FRGS 5540081 funded by the Ministry of Higher Education Malaysia and UPM GP 9574900. The authors would like to acknowledge the laboratory staffs of the Department of Chemical and Environmental Engineering, Faculty of Engineering, UPM for analytical services and Centre for Research and Instrumentation (CRIM), Universiti Kebangsaan Malaysia for providing technical assistance for laboratory analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faradiella Mohd Kusin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd Isha, N.S., Mohd Kusin, F., Ahmad Kamal, N.M. et al. Geochemical and mineralogical assessment of sedimentary limestone mine waste and potential for mineral carbonation. Environ Geochem Health 43, 2065–2080 (2021). https://doi.org/10.1007/s10653-020-00784-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00784-z

Keywords

Navigation