Skip to main content

Advertisement

Log in

The path from geology to indoor radon

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

It is generally accepted that radon emission is strongly influenced by the geological characteristics of the bedrock. However, transport in-soil and entry paths indoors are defined by other factors such as permeability, building and architectural features, ventilation, occupation patterns, etc. The purpose of this paper is to analyze the contribution of each parameter, from natural to man-made, on the radon accumulation indoors and to assess potential patterns, based on 100 case studies in Romania. The study pointed out that the geological foundation can provide a reasonable explanation for the majority of the values recorded in both soil and indoor air. Results also showed that older houses, built with earth-based materials, are highly permeable to soil radon. Energy-efficient houses, on the other hand, have a tendency to disregard the radon potential of the geological foundation, causing a higher predisposition to radon accumulation indoors and decreasing the general indoor air quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andreescu, I., Codrea, V., Enache, C., Lubenescu, V., Munteanu, T., Petculescu, Al, et al. (2011). Reassessment of the pliocene/pleistocene (neogene/quaternary) boundary in the Dacian Basin (Eastern Peratethys) Romania. Oltenia, Studii şi comunicări, Ştiinţele Naturii, 27(1), 197–220.

    Google Scholar 

  • Andreescu, I., Codrea, V., Lubenescu, V., Munteanu, T., Petculescu, A., Ştiucă, E., et al. (2013). New developments in the Upper Pliocene–Pleistocene stratigraphic units of the Dacian Basin (Eastern Paratethys), Romania. Quaternary International, 284, 15–29. https://doi.org/10.1016/j.quaint.2012.02.009.

    Article  Google Scholar 

  • Appleton, J. D. (2007). Radon: Sources, health risks, and hazard mapping. Ambio, 36, 85–90. https://doi.org/10.1579/0044-7447.

    Article  CAS  Google Scholar 

  • Appleton, J. D., & Miles, J. C. H. (2010). A statistical evaluation of the geogenic controls on indoor radon concentrations and radon risk. Journal of Environmental Radioactivity. https://doi.org/10.1016/j.jenvrad.2009.06.002.

    Article  Google Scholar 

  • Balintoni, I., Balica, C., Cliveti, M., Li, L.-Q., Hann, H. P., Chen, F., et al. (2009). The emplacement age of the Muntele Mare Variscan granite (Apuseni Mountains, Romania). Geologica Carpathica, 60(2009), 495–504. https://doi.org/10.2478/v10096-009-0036-x.

    Article  CAS  Google Scholar 

  • Balintoni, I., Balica, C., Ducea, M. N., & Hann, H. (2014). Peri-Gondwanan terranes in the Romanian Carphatians: A review of their spatial distribution, origin, provenance, and evolution. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2013.09.002.

    Article  Google Scholar 

  • Balintoni, I., Mészáros, N., & Györfi, I. (1998). La Transylvanie, dépression et bassins. Studia Universitatis Babeş-Bolyai, Geologia, 43(1), 43–59.

    Google Scholar 

  • Ball, T., Cameron, D., Coleman, T., & Roberts, P. (1991). Behaviour of radon in the geological environment: A review. Quarterly Journal of Engineering Geology. https://doi.org/10.1144/GSL.QJEG.1991.024.02.01.

    Article  Google Scholar 

  • Bossew, P. (2015). Mapping the geogenic radon potential and estimation of radon prone areas in Germany. Radiation Emergency Medicine, 4(2), 13–20.

    Google Scholar 

  • Bossew, P., Dubois, G., & Tollefsen, T. (2008). Investigations on indoor radon in Austria, part 2: Geological classes as categorical external drift for spatial modelling of the radon potential. Journal of Environmental Radioactivity. https://doi.org/10.1016/j.jenvrad.2007.06.013.

    Article  Google Scholar 

  • Brânzilă, M. (1999). Geologia părtii sudice a Câmpiei Moldovei. In Corson (Ed.), Iaşi.

  • Burghele, B., Ţenter, A., Cucoş, A., Dicu, T., Moldovan, M., Papp, B., et al. (2019). The FIRST large-scale mapping of radon concentration in soil gas and water in Romania. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.02.342.

    Article  Google Scholar 

  • Ciotoli, G., Voltaggio, M., Tuccimei, P., Soligo, M., Pasculli, A., Beaubien, S. E., et al. (2017). Geographically weighted regression and geostatistical techniques to construct the geogenic radon potential map of the Lazio region: A methodological proposal for the European Atlas of Natural Radiation. Journal of Environmental Radioactivity. https://doi.org/10.1016/j.jenvrad.2016.05.010.

    Article  Google Scholar 

  • Ciupangea, D., Paucă, M., & Ichim, T. (1970). Geologia Depresiunii Transilvaniei. Bucureşti: Academiei R.S.R.

    Google Scholar 

  • Codarcea, A., Drăgulescu, A., Hinculov, L., Mihăilă, N., Nica, E. (1968). Geological map of Romania. Geological Institute of Romania, 1:200000, sheet L-34-XXII, Timişoara.

  • Cosma, C., Cucoş, A., Papp, B., Begy, R., Dicu, T., Moldovan, M., et al. (2013). Radon measurements and radon remediation in Bǎiţa-Ştei prone area. Carpathian Journal of Earth and Environmental Sciences, 8(2), 191–199.

    Google Scholar 

  • Cosma, C., & Jurcuţ, T. (1996). Radonul şi mediul înconjurător. Cluj-Napoca: Dacia.

    Google Scholar 

  • Cucoş Dinu, A., Cosma, C., Dicu, T., Begy, R., Moldovan, M., Papp, B., et al. (2012). Thorough investigations on indoor radon in Baita radon-prone area (Romania). Science of the Total Environment, 431, 78–83. https://doi.org/10.1016/j.scitotenv.2012.05.013.

    Article  CAS  Google Scholar 

  • Darby, S., Hill, D., Auvinen, A., Barros-Dios, J. M., Baysson, H., & Bochicchio, F. (2005). Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. British Medical Journal. https://doi.org/10.1136/bmj.38308.477650.63.

    Article  Google Scholar 

  • Demoury, C., Ielsch, G., Hemon, D., Laurent, O., Laurier, D., & Clavel, J. (2013). A statistical evaluation of the influence of housing characteristics and geogenic radon potential on indoor radon concentration in France. Journal of Environmental Radioactivity. https://doi.org/10.1016/j.jenvrad.2013.08.006.

    Article  Google Scholar 

  • Drolet, J.-P., Martel, R., Poulin, P., Dessau, J.-C., Lavoie, D., Parent, M., et al. (2013). An approach to define potential radon emission level maps using indoor radon concentration measurements and radiogeochemical data positive proportion relationships. Journal of Environmental Radioactivity. https://doi.org/10.1016/j.jenvrad.2013.04.006.

    Article  Google Scholar 

  • EC RP 112 (1999). European Commission, Radiation protection 112, Radiological Protection Principles concerning the Natural Radioactivity of Building Materials, Directorate-General Environment, Nuclear Safety and Civil Protection, EC Luxembourg.

  • Filipescu, S. (1999). The significance of foraminifera fauna from the Feleac Formation (Transylvanian Basin, Romania). Studia Universitas Babeş-Bolyai, Geologia, 44(2), 125–131.

    Google Scholar 

  • Filipescu, S. (2011). Cenozoic lithostratigraphic units in Transylvania. In I. Bucur & E. Săsăran (Eds.), Calcareous algae from Romanian Carpathians. Field trip Guidebook (pp. 37–48). Presa: Universitară Clujeană.

    Google Scholar 

  • Gheorghian, M., & Gheorghian, D. (1994). Datation biostratigraphiques des formations Miocenes du sud de la Transilvanie a partir des foraminiferes. Miocene From Transylvanian Basin, Romania, Cluj-Napoca, 4, 125–134.

    Google Scholar 

  • Gheorghian, D., Lubenescu, V., & Olteanu, R. (1970). Contribuţii la stratigrafia Miocenului din sudul Transilvaniei. D.S.S. Com Geologic Bucureşti, 57(4), 55–56.

    Google Scholar 

  • Ghiurcă, V. (1966). Briozoarele tortoniene de la Tălmacel si Cisnădioara-Sibiu. Studia Universitas Babes-Bolyai, Geologia-Geographia, 1, 99–104.

    Google Scholar 

  • Gundersen, L.C.S., Schumann. R.R., Otton, J.K., Dubiel, R.F., Owen, D.E., Dickinson, K.A. (1992). Geology of radon in the United States. In A.E. Gates and L.C.S. Gundersen (Ed.), Geologic controls on Radon, Boulder, Colorado, Geological Society of America. Special Paper 271.

  • Ionesi, L. (1994). Geologia unităţilor de platformă si a orogenului nord-dobrogean. Bucureşti: Tehnică.

    Google Scholar 

  • Kemski, J., Klingel, R., Siehl, A., & Valdivia-Manchego, M. (2009). From radon hazard to risk prediction-based on geological maps, soil gas and indoor measurements in Germany. Environmental Geology. https://doi.org/10.1007/s00254-008-1226-z.

    Article  Google Scholar 

  • Kemski, J., Klingel, R., Stegemann, A., & Siehl, R. (2005). Radon transfers from ground to houses and prediction of indoor radon in Germany based on geological information. Radioactivity in the Environment. https://doi.org/10.1016/S1569-4860(04)07103-7.

    Article  Google Scholar 

  • Kemski, J., Siehl, A., Stegemann, R., & Valdivia-Manchego, M. (2001). Mapping the geogenic radon potential in Germany. Science of the Total Environment. https://doi.org/10.1016/S0048-9697(01)00696-9.

    Article  Google Scholar 

  • Krewski, D., Lubin, J. H., Zielinski, J. M., Alavanja, M., Catalan, V. S., Field, R. W., et al. (2005). Residential radon and risk of lung cancer: a combined analysis of 7 North American case-control studies. Epidemiology, 16(2), 137–145.

    Article  Google Scholar 

  • Liteanu, E. (1952). Geologia zonei oraşului Bucureşti. Comitetul Geologic Inst Bucureşti, 1, 3–80.

    Google Scholar 

  • Liteanu, E. (1953). Geologia Ţinutului de câmpie din bazinul inferior al Argeşului si a teraselor Dunării. Inst. Geol., St. tehn. Econ., E/2 Bucuresti, 5–78.

  • Liteanu, E. (1956). Geologia si hidrogeologia ţinutului dunărean dintre Argeş si Ialomiţa. Bucureşti.

  • Lubenescu, V. (1981). Studiul biostratigrafic al Neogenului superior din sud-vestul Transilvaniei. Anuarul Institutului de Geologie şi Geofizică, 58, 123–202.

    Google Scholar 

  • Lupulescu, A., Dicu, T., Papp, B., & Cucoş, A. (2018). Determination of the monthly variation of radon activity concentration in soil. Studia Universitas Babes-Bolyai, Ambientum. https://doi.org/10.24193/subbambientum.2018.1.05.

    Article  Google Scholar 

  • Mészáros, N., & Clichici, O. (1976). Pe poteci cu banuţei de piatră. Ghid geologic al zonei Cluj. Bucuresti: Sport-Turism.

    Google Scholar 

  • Mészáros, N., & Clichici, O. (1988). La geologie du Municipe Cluj-Napoca. Studia Universitas Babes-Bolyai, Geologia-Geographia, 33(1), 51–56.

    Google Scholar 

  • Mészáros, N., Ianoliu, C. (1989). Nannoplankton zones in the Oligocene deposits of the northwesternTransylvanian Basin. The Oligocene from the Transylvanian Basin, Romania. Special volume, “Babeş - Bolyai” University, 157–162. Cluj-Napoca.

  • Mircescu, V. (1982). Zăcămintele de ape geotermale din Câmpia de Vest, in Schimbul de experienţă: Utilizarea apelor geotermale, Eds. Consiliul Popular al Judetului Timiş, Institutul de proiectari Timişoara, Com. Sin. Com. Ing. Techn., (2), 36-50.

  • Muntean, L. E., Cosma, C., Cucos (Dinu), A., Dicu, T., & Moldovan, D. V. (2014). Assessment of annual and seasonal variation of indoor radon levels in dwelling houses from Alba county, Romania. Romanian Journal of Physics, 59(1–2), 163–171.

    CAS  Google Scholar 

  • Mutihac, V. (1990). Structura geologică a teritoriului României. Bucureşti: Tehnică.

    Google Scholar 

  • Nazaroff, W. W. (1992). Radon transport from soil to air. Reviews of Geophysics, 30(2), 137–160.

    Article  Google Scholar 

  • Neznal, M., & Neznal, M. (2005). Permeability as an important parameter for radon risk classification of foundation soils. Annals of Geophysics. https://doi.org/10.4401/ag-3192.

    Article  Google Scholar 

  • Neznal, M., Neznal, N., Matolín, M., Barnet, I., & Miksova, J. (2004). The new method for assessing the radon risk of building sites. Prague: Czech Geological Survey.

    Google Scholar 

  • Otton, J. K. (1991). Potential for indoor radon hazards-A first geologic estimate, In Doe, B.R., (Ed.), Proceedings of a U.S. Geological Survey Workshop on Environmental Geochemistry, U.S. Geological Survey Circular, 1033, pp. 171–173.

  • Polonic, G. (1985). Neotectonic activity at the eastern border of the Pannonian depression and its seismic implications. Tectonophysics, 47, 109–115.

    Article  Google Scholar 

  • Răileanu, G., & Saulea, E. (1955). Contribuţii la orizontarea şi cunoaşterea variaţiilor de facies ale paleogenului din regiunea Cluj şi Jibou (NV bazinului Transilvaniei). Revista Universităţii CI Parhon şi a Politehnicii Bucureşti, 8, 233–245.

    Google Scholar 

  • Răileanu, G., & Saulea, E. (1956). Paleogenul din regiunea Cluj şi Jibou (NV bazinului Transilvaniei). Anuarul Institutului Geologic al României, 29, 272–308.

    Google Scholar 

  • Răileanu, V., Tătaru, D., Grecu, B., & Bala, A. (2012). Crustal models in Romania-II. Moldavian Platform and adjacent Areas. Romanian Journal of Physics, 57, 1438–1454.

    Google Scholar 

  • Romanian Energy Performance Methodology, 2006. Metodologie de calcul al performanţei energetice a clădirilor. https://www.mdrap.ro/userfiles/reglementari/Domeniul_XXVII/27_11_MC_001_1_2_3_2006.pdf.

  • Sachs, H. M., Hernandez, T. L., & Ring, J. W. (1982). Regional geology and radon variability in buildings. Environment International. https://doi.org/10.1016/0160-4120(82)90016-2.

    Article  Google Scholar 

  • Simionescu, T., Codrea, V., & Trelea, N. (1989). La faune quaternaire de Lovrin (dép. Timis)-Banat. Analele Ştiinţifice ale Universităţii “Al. I. Cuza” Iasi (serie nouă). Geologie-Geografie, 35, 41–53.

    Google Scholar 

  • Stoici, S., Tătaru, S. (1988). Uraniul si Thoriul. Seria substante minerale utile. In Tehnică (Ed.), Bucureşti.

  • Tunyagi, A., Dicu, T., Cucoş, A., Burghele, B., Dobrei, G., Lupulescu, A., Moldovan, M., Niţă, D., Papp, B., Zsacsvai, K., Ţenter, A., Beldean-Galea, M.S., Anton, M., Grecu, Ş., Cioloca, L., Miloş, R., Botoş, M.L., Chiorean, C.G., Catalina, T., Istrate, M.A., & Sainz, C. An innovative system for monitoring radon and indoor air quality. Romanian Journal of Physics, 2019 (Accepted).

  • United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). (2000). Sources and Effects of Ionizing Radiation, Report to the General Assembly (pp. 1–10). New York: United Nations.

    Google Scholar 

  • Vancea, A., & Ungureanu, L. (1960). Asupra corelării depozitelor miopliocene din bazinul Transilvaniei pe baza de microfauna. Stud. si cerc. de geolog. Bucureşti, 4, 619–625.

    Google Scholar 

  • WHO (2009). World Health Organization. Handbook on Indoor Radon, a Public Health Perspective. In Zeeb, Hajo, Shannoun, Ferid (Eds.), p. 110.

Download references

Acknowledgements

The research is supported by the project ID P_37_229, Contract No. 22/01.09.2016, with the title “Smart Systems for Public Safety through Control and Mitigation of Residential Radon linked with Energy Efficiency Optimization of Buildings in Romanian Major Urban Agglomerations SMART-RAD-EN” of the POC 2014-2020 Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bety-Denissa Burghele.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Florică, Ş., Burghele, BD., Bican-Brişan, N. et al. The path from geology to indoor radon. Environ Geochem Health 42, 2655–2665 (2020). https://doi.org/10.1007/s10653-019-00496-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00496-z

Keywords

Navigation