Skip to main content
Log in

An integrated interdisciplinary approach to evaluate potentially toxic element sources in a mountainous watershed

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Potentially toxic elements (PTEs, i.e., Cd, Ni, Cr) and their source apportionment in waters are of major environmental concern. Different approaches can be used to evaluate PTEs sources in environment, but single-way approaches are often limited and can easily fail. PTEs sources apportionment should include the evaluation of geochemical background and spatiotemporal trends analyses. We propose an integrated approach, and we apply it to a mountain catchment in the Italian central Alps, where ultramafic terranes crop out. We collected water and glacial sediment samples during the melting season. Then, we analyzed major ions and PTEs in waters, and we quantified the total PTEs load in sediments through acid digestion. Data were then processed through spatial and temporal trends analysis, clustering of variables and the evaluation of partition between the different compartments. We found a high geochemical background of part of the PTEs, consistently with results from other areas worldwide on mafic and ultramafic terranes (high concentrations of Ni, Cr and Fe), while we identified an additional atmospheric deposition source for Zn, Cd and Ag. Also, redundant observations on Cu, As and Pb indicated a possible mixed source. This study elucidates the need for an integrated approach to avoid unnecessary or misleading assumptions in the PTE’s source appointment. A single-way approach application, in fact, can fail in understanding element source in a complicated and dynamic compartment like surface water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albanese, S., De Vivo, B., Lima, A., & Cicchella, D. (2007). Geochemical background and baseline values of toxic elements in stream sediments of Campania region (Italy). Journal of Geochemical Exploration,93(1), 21–34. https://doi.org/10.1016/j.gexplo.2006.07.006.

    Article  CAS  Google Scholar 

  • Alier, M., Felipe-Sotelo, M., Hernàndez, I., & Tauler, R. (2009). Variation patterns of nitric oxide in Catalonia during the period from 2001 to 2006 using multivariate data analysis methods. Analytica chimica acta,642(1), 77–88.

    Article  CAS  Google Scholar 

  • Ambrosetti, P., Anfossi, D., Cieslik, S., Graziani, G., Lamprecht, R., Marzorati, A., et al. (1998). Mesoscale transport of atmospheric trace constituents across the central Alps: Transalp tracer experiments. Atmospheric Environment,32(7), 1257–1272. https://doi.org/10.1016/S1352-2310(97)00185-4.

    Article  CAS  Google Scholar 

  • Ander, E. L., Johnson, C. C., Cave, M. R., Palumbo-Roe, B., Nathanail, C. P., & Lark, R. M. (2013). Methodology for the determination of normal background concentrations of contaminants in English soil. Science of The Total Environment,454–455, 604–618. https://doi.org/10.1016/j.scitotenv.2013.03.005.

    Article  CAS  Google Scholar 

  • Bedogné, F., Montrasio, A., & Sciesa, E. (1993). I minerali della provincia di Sondrio, Valmalenco. Sondrio: Bettini.

    Google Scholar 

  • Binda, G., Pozzi, A., Livio, F., Piasini, P., & Zhang, C. (2018). Anomalously high concentration of Ni as sulphide phase in sediment and in water of a mountain catchment with serpentinite bedrock. Journal of Geochemical Exploration,190, 58–68. https://doi.org/10.1016/j.gexplo.2018.02.014.

    Article  CAS  Google Scholar 

  • Bloise, A., Barca, D., Gualtieri, A. F., Pollastri, S., & Belluso, E. (2016). Trace elements in hazardous mineral fibres. Environmental Pollution,216, 314–323. https://doi.org/10.1016/j.envpol.2016.06.007.

    Article  CAS  Google Scholar 

  • Bonifacio, E., Falsone, G., & Piazza, S. (2010). Linking Ni and Cr concentrations to soil mineralogy: Does it help to assess metal contamination when the natural background is high? Journal of Soils and Sediments,10(8), 1475–1486.

    Article  CAS  Google Scholar 

  • Bonsignore, G., Casati, P., Crespi, R., Fagnani, G., Liborio, G., Montrasio, A., et al. (1971). Note Illustrative della Carta Geologica d’Italia alla scala 1: 100.000, Fogli 7 e 18: Pizzo Bernina e Sondrio. Nuova Tecnica Grafica, Serv Geol It, Roma, 1–130.

  • Borůvka, L., Vacek, O., & Jehlička, J. (2005). Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma,128(3), 289–300.

    Article  Google Scholar 

  • Brown, G. H. (2002). Glacier meltwater hydrochemistry. Applied Geochemistry,17(7), 855–883.

    Article  CAS  Google Scholar 

  • Burkhard, D. J. (1989). Co–Ni–As sulphides in serpentinites of different metamorphic grade in the eastern Central Alps (Switzerland and Italy). Mineralogy and Petrology,41(1), 65–71.

    Article  CAS  Google Scholar 

  • Busico, G., Cuoco, E., Kazakis, N., Colombani, N., Mastrocicco, M., Tedesco, D., et al. (2018). Multivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace elements occurrence in the Campania Plain, Southern Italy. Environmental Pollution,234, 260–269. https://doi.org/10.1016/j.envpol.2017.11.053.

    Article  CAS  Google Scholar 

  • Carrivick, J. L., & Russell, A. J. (2007). Glacial landforms, sediments. Glacifluvial landforms of deposition. In S. A. Elias (Ed) Encyclopedia of quaternary science (pp. 909–920). Oxford: Elsevier. https://doi.org/10.1016/B0-44-452747-8/00087-9.

    Chapter  Google Scholar 

  • Cavallo, A. (2018). Serpentinitic waste materials from the dimension stone industry: Characterization, possible reuses and critical issues. Resources Policy,59, 17–23. https://doi.org/10.1016/j.resourpol.2018.08.003.

    Article  Google Scholar 

  • Chabukdhara, M., & Nema, A. K. (2012). Assessment of heavy metal contamination in Hindon River sediments: A chemometric and geochemical approach. Chemosphere,87(8), 945–953.

    Article  CAS  Google Scholar 

  • Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., et al. (2009). The Last Glacial Maximum. Science,325(5941), 710–714. https://doi.org/10.1126/science.1172873.

    Article  CAS  Google Scholar 

  • Coward, M., & Dietrich, D. (1989). Alpine tectonics—an overview. Geological Society, London, Special Publications,45(1), 1–29.

    Article  Google Scholar 

  • Dalla Libera, N., Fabbri, P., Mason, L., Piccinini, L., & Pola, M. (2017). Geostatistics as a tool to improve the natural background level definition: An application in groundwater. Science of The Total Environment,598, 330–340. https://doi.org/10.1016/j.scitotenv.2017.04.018.

    Article  CAS  Google Scholar 

  • De Vallejuelo, S. F.-O., Gredilla, A., de Diego, A., Arana, G., & Madariaga, J. M. (2014). Methodology to assess the mobility of trace elements between water and contaminated estuarine sediments as a function of the site physico-chemical characteristics. Science of the Total Environment,473, 359–371.

    Article  Google Scholar 

  • Devic, G., Djordjevic, D., & Sakan, S. (2014). Natural and anthropogenic factors affecting the groundwater quality in Serbia. Science of The Total Environment,468–469, 933–942. https://doi.org/10.1016/j.scitotenv.2013.09.011.

    Article  CAS  Google Scholar 

  • Dossi, C., Ciceri, E., Giussani, B., Pozzi, A., Galgaro, A., Viero, A., et al. (2007). Water and snow chemistry of main ions and trace elements in the karst system of Monte Pelmo massif (Dolomites, Eastern Alps, Italy). Marine and Freshwater Research,58(7), 649–656. https://doi.org/10.1071/MF06170.

    Article  CAS  Google Scholar 

  • Dung, T. T. T., Cappuyns, V., Swennen, R., & Phung, N. K. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Environmental Science and Bio/Technology,12(4), 335–353.

    Article  CAS  Google Scholar 

  • Evans, D. J. A. (2013). Glacial landforms, sediments | tills. In: S. A. Elias & C. J. Mock (Eds.), Encyclopedia of quaternary science (2nd Edn., pp. 62–75). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-444-53643-3.00088-1.

    Chapter  Google Scholar 

  • Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2002). Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring,4(6), 823–857. https://doi.org/10.1039/B207574C.

    Article  CAS  Google Scholar 

  • Finardi, S., Silibello, C., D’Allura, A., & Radice, P. (2014). Analysis of pollutants exchange between the Po Valley and the surrounding European region. Urban Climate,10, 682–702. https://doi.org/10.1016/j.uclim.2014.02.002.

    Article  Google Scholar 

  • Fortner, S. K., Mark, B. G., McKenzie, J. M., Bury, J., Trierweiler, A., Baraer, M., et al. (2011). Elevated stream trace and minor element concentrations in the foreland of receding tropical glaciers. Applied Geochemistry,26(11), 1792–1801.

    Article  CAS  Google Scholar 

  • Gabrielli, P., Cozzi, G., Torcini, S., Cescon, P., & Barbante, C. (2008). Trace elements in winter snow of the Dolomites (Italy): A statistical study of natural and anthropogenic contributions. Chemosphere,72(10), 1504–1509. https://doi.org/10.1016/j.chemosphere.2008.04.076.

    Article  CAS  Google Scholar 

  • Galili, T. (2015). Dendextend: An R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics,31(22), 3718–3720. https://doi.org/10.1093/bioinformatics/btv428.

    Article  CAS  Google Scholar 

  • Galuszka, A. (2007). A review of geochemical background concepts and an example using data from Poland. Environmental Geology,52(5), 861–870. https://doi.org/10.1007/s00254-006-0528-2.

    Article  Google Scholar 

  • Giussani, B., Roncoroni, S., Recchia, S., & Pozzi, A. (2016). Bidimensional and Multidimensional Principal Component Analysis in Long Term Atmospheric Monitoring. Atmosphere,7(12), 155.

    Article  Google Scholar 

  • Gong, M., Wu, L., Bi, X., Ren, L., Wang, L., Ma, Z., et al. (2010). Assessing heavy-metal contamination and sources by GIS-based approach and multivariate analysis of urban–rural topsoils in Wuhan, central China. Environmental Geochemistry and Health,32(1), 59–72. https://doi.org/10.1007/s10653-009-9265-2.

    Article  CAS  Google Scholar 

  • Hindshaw, R. S., Tipper, E. T., Reynolds, B. C., Lemarchand, E., Wiederhold, J. G., Magnusson, J., et al. (2011). Hydrological control of stream water chemistry in a glacial catchment (Damma Glacier, Switzerland). Chemical Geology,285(1), 215–230.

    Article  CAS  Google Scholar 

  • Hinsby, K., Condesso de Melo, M. T., & Dahl, M. (2008). European case studies supporting the derivation of natural background levels and groundwater threshold values for the protection of dependent ecosystems and human health. Science of The Total Environment,401(1), 1–20. https://doi.org/10.1016/j.scitotenv.2008.03.018.

    Article  CAS  Google Scholar 

  • Ilyashuk, B. P., Ilyashuk, E. A., Psenner, R., Tessadri, R., & Koinig, K. A. (2014). Rock Glacier Outflows May Adversely Affect Lakes: Lessons from the Past and Present of Two Neighboring Water Bodies in a Crystalline-Rock Watershed. Environmental Science & Technology,48(11), 6192–6200. https://doi.org/10.1021/es500180c.

    Article  CAS  Google Scholar 

  • Jiang, Y., Chao, S., Liu, J., Yang, Y., Chen, Y., Zhang, A., et al. (2017). Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere,168, 1658–1668. https://doi.org/10.1016/j.chemosphere.2016.11.088.

    Article  CAS  Google Scholar 

  • Jung, M. C. (2001). Heavy metal contamination of soils and waters in and around the Imcheon Au–Ag mine, Korea. Applied Geochemistry,16(11), 1369–1375. https://doi.org/10.1016/S0883-2927(01)00040-3.

    Article  CAS  Google Scholar 

  • Kanellopoulos, C., Argyraki, A., & Mitropoulos, P. (2015). Geochemistry of serpentine agricultural soil and associated groundwater chemistry and vegetation in the area of Atalanti, Greece. Journal of Geochemical Exploration,158, 22–33. https://doi.org/10.1016/j.gexplo.2015.06.013.

    Article  CAS  Google Scholar 

  • Kierczak, J., Neel, C., Bril, H., & Puziewicz, J. (2007). Effect of mineralogy and pedoclimatic variations on Ni and Cr distribution in serpentine soils under temperate climate. Geoderma,142(1), 165–177.

    Article  CAS  Google Scholar 

  • Kierczak, J., Neel, C., Aleksander-Kwaterczak, U., Helios-Rybicka, E., Bril, H., & Puziewicz, J. (2008). Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: A combined approach. Chemosphere,73(5), 776–784.

    Article  CAS  Google Scholar 

  • Kierczak, J., Pędziwiatr, A., Waroszewski, J., & Modelska, M. (2016). Mobility of Ni, Cr and Co in serpentine soils derived on various ultrabasic bedrocks under temperate climate. Geoderma,268, 78–91.

    Article  CAS  Google Scholar 

  • Lecomte, K. L., Milana, J. P., Formica, S. M., & Depetris, P. J. (2008). Hydrochemical appraisal of ice-and rock-glacier meltwater in the hyperarid Agua Negra drainage basin, Andes of Argentina. Hydrological processes,22(13), 2180–2195.

    Article  CAS  Google Scholar 

  • Liang, J., Feng, C., Zeng, G., Gao, X., Zhong, M., Li, X., et al. (2017). Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environmental Pollution,225, 681–690. https://doi.org/10.1016/j.envpol.2017.03.057.

    Article  CAS  Google Scholar 

  • Long, G. L., & Winefordner, J. D., (1983). Limit of detection. A closer look at the IUPAC definition. Analytical Chemistry,55(7), 712A–724A.

    CAS  Google Scholar 

  • Loska, K., & Wiechuła, D. (2003). Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere,51(8), 723–733.

    Article  CAS  Google Scholar 

  • MacQuarrie, K. T., & Mayer, K. U. (2005). Reactive transport modeling in fractured rock: A state-of-the-science review. Earth-Science Reviews,72(3), 189–227.

    Article  CAS  Google Scholar 

  • Marty, C., & Meister, R. (2012). Long-term snow and weather observations at Weissfluhjoch and its relation to other high-altitude observatories in the Alps. Theoretical and Applied Climatology,110(4), 573–583. https://doi.org/10.1007/s00704-012-0584-3.

    Article  Google Scholar 

  • Matthews, J. A., & Briffa, K. R. (2005). The ‘little ice age’: Re-evaluation of an evolving concept. Geografiska Annaler: Series A, Physical Geography,87(1), 17–36. https://doi.org/10.1111/j.0435-3676.2005.00242.x.

    Article  Google Scholar 

  • Morrison, J. M., Goldhaber, M. B., Mills, C. T., Breit, G. N., Hooper, R. L., Holloway, J. M., et al. (2015). Weathering and transport of chromium and nickel from serpentinite in the coast range ophiolite to the Sacramento Valley, California, USA. Applied Geochemistry,61, 72–86.

    Article  CAS  Google Scholar 

  • Muhammad, S., Shah, M. T., & Khan, S. (2011). Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchemical Journal,98(2), 334–343. https://doi.org/10.1016/j.microc.2011.03.003.

    Article  CAS  Google Scholar 

  • Muntener, O., Hermann, J., & Trommsdorff, V. (2000). Cooling History and Exhumation of Lower-Crustal Granulite and Upper Mantle (Malenco, Eastern Central Alps). Journal of Petrology,41(2), 175–200. https://doi.org/10.1093/petrology/41.2.175.

    Article  CAS  Google Scholar 

  • Ou, C., St-Hilaire, A., Ouarda, T. B. M. J., Conly, F. M., Armstrong, N., Khalil, B., et al. (2012). Coupling geostatistical approaches with PCA and fuzzy optimal model (FOM) for the integrated assessment of sampling locations of water quality monitoring networks (WQMNs). Journal of Environmental Monitoring,14(12), 3118. https://doi.org/10.1039/c2em30372h.

    Article  CAS  Google Scholar 

  • Pelica, J., Barbosa, S., Reboredo, F., Lidon, F., Pessoa, F., & Calvão, T. (2018). The paradigm of high concentration of metals of natural or anthropogenic origin in soils – The case of Neves-Corvo mine area (Southern Portugal). Journal of Geochemical Exploration,186, 12–23. https://doi.org/10.1016/j.gexplo.2017.11.021.

    Article  CAS  Google Scholar 

  • Peña Reyes, F. A., Crosta, G. B., Frattini, P., Basiricò, S., & Della Pergola, R. (2015). Hydrogeochemical overview and natural arsenic occurrence in groundwater from alpine springs (upper Valtellina, Northern Italy). Journal of Hydrology,529, 1530–1549. https://doi.org/10.1016/j.jhydrol.2015.08.029.

    Article  CAS  Google Scholar 

  • Pozzorini, D., & FruhGreen, G. L. (1996). Stable isotope systematics of the Ventina ophicarbonate zone, Bergell contact aureole. Schweizerische Mineralogische und Petrographische Mitteilungen,76(3), 549–564.

    CAS  Google Scholar 

  • Pueyo, M., Mateu, J., Rigol, A., Vidal, M., López-Sánchez, J. F., & Rauret, G. (2008). Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environmental pollution,152(2), 330–341.

    Article  CAS  Google Scholar 

  • Quevauviller, P. (1998). Operationally defined extraction procedures for soil and sediment analysis I. Standardization. TrAC Trends in Analytical Chemistry,17(5), 289–298.

    Article  CAS  Google Scholar 

  • R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/. Accessed 20 Mar 2019.

  • Reimann, C., Fabian, K., Birke, M., Filzmoser, P., Demetriades, A., Négrel, P., et al. (2018). GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Applied Geochemistry,88, 302–318. https://doi.org/10.1016/j.apgeochem.2017.01.021.

    Article  CAS  Google Scholar 

  • Ross, A., & Willson, V. L. (2017). One-way anova. In Basic and advanced statistical tests (pp. 21–24). Rotterdam: Sense Publishers. https://doi.org/10.1007/978-94-6351-086-8_5.

    Chapter  Google Scholar 

  • Sahariah, B., Goswami, L., Farooqui, I. U., Raul, P., Bhattacharyya, P., & Bhattacharya, S. (2015). Solubility, hydrogeochemical impact, and health assessment of toxic metals in municipal wastes of two differently populated cities. Journal of Geochemical Exploration,157, 100–109.

    Article  CAS  Google Scholar 

  • Santolaria, Z., Arruebo, T., Pardo, A., Rodríguez-Casals, C., Matesanz, J. M., Lanaja, F. J., Urieta, J. S., et al. (2017). Natural and anthropic effects on hydrochemistry and major and trace elements in the water mass of a Spanish Pyrenean glacial lake set. Environmental Monitoring and Assessment,189(7), 324. https://doi.org/10.1007/s10661-017-6023-2.

    Article  CAS  Google Scholar 

  • Schmid, S. M., Fügenschuh, B., Kissling, E., & Schuster, R. (2004). Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae,97(1), 93–117.

    Article  Google Scholar 

  • Schneider, P., Nilius, U., Gottschalk, N., Süß, A., Schaffrath, M., Löser, R., et al. (2017). Determination of the geogenic metal background in surface water: Benchmarking methodology for the rivers of Saxony-Anhalt, Germany. Water,9(2), 75. https://doi.org/10.3390/w9020075.

    Article  CAS  Google Scholar 

  • Shah, M. H., Iqbal, J., Shaheen, N., Khan, N., Choudhary, M. A., & Akhter, G. (2012). Assessment of background levels of trace metals in water and soil from a remote region of Himalaya. Environmental Monitoring and Assessment,184(3), 1243–1252. https://doi.org/10.1007/s10661-011-2036-4.

    Article  CAS  Google Scholar 

  • Sollitto, D., Romic, M., Castrignanò, A., Romic, D., & Bakic, H. (2010). Assessing heavy metal contamination in soils of the Zagreb region (Northwest Croatia) using multivariate geostatistics. CATENA,80(3), 182–194.

    Article  CAS  Google Scholar 

  • Sommaruga-Wögrath, S., Koinig, K. A., Schmidt, R., Sommaruga, R., Tessadri, R., & Psenner, R. (1997). Temperature effects on the acidity of remote alpine lakes. Nature,387(6628), 64–67.

    Article  Google Scholar 

  • Su, S., Li, D., Zhang, Q., Xiao, R., Huang, F., & Wu, J. (2011). Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, China. Water Research,45(4), 1781–1795. https://doi.org/10.1016/j.watres.2010.11.030.

    Article  CAS  Google Scholar 

  • Tranter, M. (2003). Geochemical weathering in glacial and proglacial environments. Treatise on geochemistry,5, 605.

    Google Scholar 

  • Trommsdorff, V., & Evans, B. W. (1977). Antigorite-ophicarbonates: Contact metamorphism in Valmalenco, Italy. Contributions to Mineralogy and Petrology,62(3), 301–312.

    Article  CAS  Google Scholar 

  • Trommsdorff, V., Montrasio, A., Hermann, J., Muntener, O., Spillmann, P., & Giere, R. (2005). The geological map of Valmalenco. Schweizerische Mineralogische und Petrographische Mitteilungen,85(1), 1–13.

    Google Scholar 

  • Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., & Weingartner, R., et al. (2007). Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resources Research,43(7), 1–13. https://doi.org/10.1029/2006WR005653.

    Article  Google Scholar 

  • Voutsis, N., Kelepertzis, E., Tziritis, E., & Kelepertsis, A. (2015). Assessing the hydrogeochemistry of groundwaters in ophiolite areas of Euboea Island, Greece, using multivariate statistical methods. Journal of Geochemical Exploration,159, 79–92.

    Article  CAS  Google Scholar 

  • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association,58(301), 236–244. https://doi.org/10.1080/01621459.1963.10500845.

    Article  Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta,59(7), 1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2.

    Article  CAS  Google Scholar 

  • Zhang, C., Luo, L., Xu, W., & Ledwith, V. (2008). Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Science of The Total Environment,398(1–3), 212–221. https://doi.org/10.1016/j.scitotenv.2008.03.011.

    Article  CAS  Google Scholar 

  • Zhou, J., Ma, D., Pan, J., Nie, W., & Wu, K. (2008). Application of multivariate statistical approach to identify heavy metal sources in sediment and waters: A case study in Yangzhong, China. Environmental Geology,54(2), 373–380.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Dr. Christian Colombo, Dr. Simone D’Antino, Dr. Cristiano Mazza, Dr. Valentina Martinelli and Dr. Paolo Piasini for field and laboratory assistance, and the “Gerli-Porro” mountain hut staff for logistical assistance during sampling campaigns. Authors are also grateful to the four anonymous reviewers for their helpful comments, which improved manuscript quality. This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto Binda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10653_2019_405_MOESM1_ESM.xlsx

Table S1, including the chemical data for all collected water samples, and Table S2, indicating the chemical results for acid digestion of glacial sediment samples. (XLSX 74 kb)

Appendix: Detailed methods

Appendix: Detailed methods

Detailed water analyses

Physicochemical parameters (pH, temperature and electrical conductivity) were evaluated in situ using specific field probes: pH and temperature were measured with a HANNA instruments HI 9025 pH meter; electrical conductivity was measured with a HANNA Instruments HI 9033 conductivity meter. Water samples for laboratory analyses were filtered through 0.45-µm filters and then collected in LPDE bottles.

Carbonates, as \({\text{HCO}}_{3}^{ - }\), were estimated by colorimetric titration using 0,01 M HCl and Bromocresol Green as indicator. Other major anions (Cl, \({\text{NO}}_{3}^{ - }\), \({\text{SO}}_{4}^{2 - }\)) and cations (Ca2+, Mg2+, Na+, NH4+, K+) were analyzed using an ionic chromatography Metrohm Eco IC (Swiss Confederation).

Samples for trace elements analyses, once collected, were acidified adding 2% volume ultrapure HNO3 and analyzed using an iCAP-Q ICP-MS instrument from Thermo Fisher Scientific (USA). All samples were spiked with In as internal standard, and instrumental drift was beneath the 10% for all samples.

Limit of detection (LOD) for major ions, as referenced from the instrument, is 0.05 ppm. For trace elements, LOD was estimated as three times the standard deviation of blank samples (Long and Winefordner 1983).

Detailed sediment samples analysis

Once in laboratory, sediment samples were air-dried in oven at 105 °C for 3 h (Quevauviller 1998) and then < 2 mm fraction was sieved and selected for analysis (Chabukdhara and Nema 2012). Then, 500 mg of sample was inserted in Teflon vessels, and 3 ml of solution (pure hydrochloric and nitric acid solution in proportion 1: 2) was added (Filgueiras et al. 2002; Pueyo et al. 2008). The digestion was performed in MLS-1200 Mega, Milestone (USA) microwave digester. After cooling, the solutions were diluted with ultrapure water and then analyzed using a Thermo Fisher Scientific (USA) Icap-Q ICP-MS instrument. Samples were run in triplicate and present less than 5% of relative standard deviation.

Analysis solutions

All the solutions used in laboratory for this study were made using ultrapure water from a Millipore MilliQ system (18.8 MΩcm resistivity).

Acid solutions were obtained from a Carlo Erba® reagents (Italy) 65% volume solution and then were purified through sub-boiling distillation using a Milestone (USA) DuoPUR system.

Standard solutions for major ions and trace element analysis were obtained from dilution of MERCK (Germany) multi-elemental standards.

Detailed statistical methods

ANOVA

ANOVA test compares the averages and the variances of two different datasets following a categorical variable. The null hypothesis is that these datasets are the same, and the variance among samples is, therefore, the same as the difference between the datasets. F value is calculated as the ratio of variance inside the group and among the groups, and also the test p value is calculated (Ross and Willson 2017).

Cluster analysis

Ward’s method starts from a singleton (single-point clusters) and aims to create clusters with the lowest possible sum of squares increment. We decided to use this method because it creates small clusters (Ward 1963).

To avoid interferences in the cluster analysis due to different measure units of variables, all the measures were scaled and centered on average, using Eq. A1:

$$x_{i}^{\prime } = \frac{{x_{i} - \mu }}{s}$$
(A1)

where µ is the average value, s is the standard deviation, xi is the original value and \(x_{i}^{\prime }\), is the standardized value (Sahariah et al. 2015).

Statistical analysis was performed using R version 3 (R Core Team 2014) and the package “dendextend” to perform cluster analyses (Galili 2015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binda, G., Pozzi, A. & Livio, F. An integrated interdisciplinary approach to evaluate potentially toxic element sources in a mountainous watershed. Environ Geochem Health 42, 1255–1272 (2020). https://doi.org/10.1007/s10653-019-00405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00405-4

Keywords

Navigation