Skip to main content

Advertisement

Log in

Metal concentrations in waters, sediments and biota of the far south-east coast of New South Wales, Australia, with an emphasis on Sn, Cu and Zn used as marine antifoulant agents

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Tin, Cu, Zn, Cd, Pb, Ag and Hg concentrations were measured in waters, sediments and three ubiquitous sedentary molluscs: the oyster, Saccostrea glomerata, a rocky intertidal gastropod, Austrocochlea porcata, and a sediment-dwelling gastropod, Batillaria australis, at 12 locations along the far south coast of NSW, Australia, from Batemans Bay to Twofold Bay during 2009. Metal concentrations in water for Sn, Cd, Ag and Hg were below detection limits (< 0.005 μg/L). Measurable water metal concentrations were Cu: 0.01–0.08 μg/L, Zn: 0.005–0.11 μg/L and Pb: 0.005–0.06 μg/L. Mean metal concentration in sediments were Sn < 0.01–2 μg/g, Cu < 0.01–605 μg/g, Zn 23–765 μg/g, Cd < 0.01–0.5 μg/g, Pb < 0.01–0.3 μg/g, Ag < 0.01–0.9 μg/g and Hg < 0.01–2.3 μg/g. Several locations exceeded the Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand (Australian and New Zealand guidelines for fresh and marine water quality 2000) low and high interim sediment quality guidelines’ levels for Cu, Zn, Cd and Hg. Some sites had measurable Sn concentrations, but these were all well below the levels of tributyltin known to cause harm to marine animals. Elevated metal concentrations are likely to be from the use of antifoulants on boats, historical mining activities and agriculture in the catchments of estuaries. All molluscs had no measurable concentrations of Sn (< 0.01 μg/g) and low mean Ag (< 0.01–1.5 μg/g) and Hg (< 0.01–0.5 μg/g) concentrations. Mean Cu (24–1516 μg/g), Zn (45–4644 μg/g), Cd (0.05–5μg/g) and Pb (0.05–1.1 μg/g) in oysters were close to background concentrations. Oysters have Cd and Pb concentrations well below the Australian Food Standards Code (2002).] There were no significant correlations between metal concentrations in sediments and in organisms within locations, and no relationship with levels of boating activity and suspected antifouling contamination. Although not pristine, the low levels of metal contamination in sediments and molluscs in comparison with known metal-contaminated areas indicate that this region is not grossly contaminated with metals and suitable for the development of mariculture.]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ANFA. (2002). Australian food standards code. Melbourne: Australia New Zealand Food Authority.

    Google Scholar 

  • ANZECC/ARMCANZ. (2000). Australian and New Zealand guidelines for fresh and marine water quality. Melbourne: Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand.

    Google Scholar 

  • Apte, S. C., Batley, G. E., Szymczak, R., Rendell, P. S., Lee, R., & Waite, T. D. (1998). Baseline metal concentrations in New South Wales coastal waters. Marine & Freshwater Research, 49, 201–214.

    Article  Google Scholar 

  • Baldwin, S., Deaker, M., & Maher, W. (1994). Low-volume microwave digestion of marine biological tissues for the measurement of trace elements. Analyst, 119, 1701–1704.

    Article  CAS  Google Scholar 

  • Bao, V. W., Leung, K. M., Kwok, K. W., Zhang, A. Q., & Lui, G. C. (2008). Synergistic toxic effects of zinc pyrithione and copper to three marine species: Implications on setting appropriate water quality criteria. Marine Pollution Bulletin, 57, 616–623.

    Article  CAS  Google Scholar 

  • Batley, G. E., Brockbank, C. I., & Scammel, M. S. (1992). The impact of banning of tributyltin based anti-fouling paints on the Sydney rock oyster, Saccostrea commercialis. Science of the Total Environment, 122, 301–314.

    Article  CAS  Google Scholar 

  • Bega Valley and Eurobodalla Shire Council. (2000). Wallaga lake estuary management plan (no. 5, pp. 1–57).

  • Bighiu, M. A., Eriksson-Wiklundi, A.-K., & Eklundi, B. (2017). Biofouling of leisure boats as a source of metal pollution. Environmental Science and Pollution Research, 24, 997–1006.

    Article  CAS  Google Scholar 

  • Boxall, A. B. A., Comber, S. D., Conrad, A. U., Howcroft, J., & Zaman, N. (2000). Modelling of Antifouling Biocides in UK Estuaries. Marine Pollution Bulletin, 40, 898–905.

    Article  CAS  Google Scholar 

  • Boyle, E. A., Edmond, J. M., & Sholkovitz, E. R. (1977). The mechanism of iron removal in estuaries. Geochimica et Cosmochimica Acta, 41, 1313–1324.

    Article  CAS  Google Scholar 

  • Chandrika, V., Tarit, C., & Kunal, G. (1997). Complexation of humic substances with oxides of iron and aluminium. Soil Science, 162, 28–34.

    Article  Google Scholar 

  • Clarke, K. R., & Warwick, R. M. (1994). Changes in marine communities: An approach to statistical analysis and interpretation. Plymouth: Plymouth Marine Laboratory.

    Google Scholar 

  • Comber, S. D. W., Franklin, G., Gardner, M. J., Watts, C. D., Boxall, A. B. A., & Howcroft, J. (2002). Partitioning of marine antifoulants in the marine Environment. The Science of the Total Environment, 286, 61–71.

    Article  CAS  Google Scholar 

  • Comber, S. D. W., Gunn, A. M., & Whalley, C. (1995). Comparison of the partitioning of trace metals in the Humber and Mersey estuaries. Marine Pollution Bulletin, 30, 851–860.

    Article  CAS  Google Scholar 

  • DIST/DIRD. (2017). Regional jobs and investment packages. South Coast region of New South Wales local Investment plan. Department of Industry, Innovation and Science-Department of Infrastructure and regional development, May 2017, pp. 1–36.

  • Douzva, B., Lhotka, M., Grygar, T., Machovic, V., & Herzogova, L. (2011). Insitu co-adsorption of arsenic and iron/manganese ions on raw clays. Applied Clay Science, 54, 166–171.

    Article  Google Scholar 

  • Edge, K. J., Daffon, K. A., Simpson, S. L., Ringwood, A. H., & Johnston, E. L. (2015). Resuspended contaminated sediments cause sub-lethal stress to oysters: a biomarker differentiates TSS and contaminant effects. Environmental Toxicology and Chemistry, 34, 1345–1353.

    Article  CAS  Google Scholar 

  • Fabris, G. J., & Monahan, C. A. (1995). Characterisation of toxicants in Port Phillip Bay: Metals. Technical Report No 18, Commonwealth Scientific and Industrial Research Organisation INRE Port Phillip Bay Environmental Study, Melbourne, p. 48.

  • Fauser, P., Sanderson, H., Hedegaard, R. V., Sloth, J. J., Larsen, M. M., Krongaard, T., et al. (2013). Occurrence and sorption properties of arsenicals in marine sediments. Environmental Monitoring and Assessment, 185, 4679–4691.

    Article  CAS  Google Scholar 

  • Gay, D., & Maher, W. A. (2003). Natural variation of copper, zinc, cadmium and selenium concentrations in Bembicium namum and their potential use as a biomonitor of trace metals. Water Research, 37, 2173–2185.

    Article  CAS  Google Scholar 

  • Georges, A., (2002). Biometry: Statistics for ecology and natural resource management. Workbook 1: Introduction to SAS for windows (version 8). Flexible Delivery Development Unit, Centre for the Enhancement of Learning, Teaching and Scholarship (CELTS), University of Canberra, ACT 2601, Australia (IBSN: 1 740880269).

  • Geosciences Australia. (2000). Lachlan fold belt project (19912000). Viewed 17 January, 2010. http://www.ga.gov.au/minerals/research/archive/lachlan_fold_belt.jsp#1-250000.

  • Gibson, C. P., & Wilson, S. P. (2003). ‘Imposex” still evident in eastern Australia 10 years after tributyltin restrictions. Marine Environmental Research, 55, 101–112.

    Article  CAS  Google Scholar 

  • Guardiola, F. A., Cuesta, A., Meseguer, J., & Esteban, M. A. (2012). Risks of using antifouling biocides in aquaculture. International Journal of Molecular Science, 13, 1541–1560.

    Article  CAS  Google Scholar 

  • Guo, T., DeLaune, R. D., & Patrick, W. H., Jr. (1997). The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environment International, 23(3), 305–316.

    Article  CAS  Google Scholar 

  • Hatje, V., Apte, S. C., Hales, L. T., & Birch, G. F. (2003). Dissolved trace metal distributions in Port Jackson estuary (Sydney Harbour), Australia. Marine Pollution Bulletin, 46, 719–730.

    Article  CAS  Google Scholar 

  • Haynes, D., & Loong, D. (2002). Antifoulant (butyltin and copper) concentrations in sediments from the Great Barrier Reef world heritage area, Australia. Environmental Pollution, 120, 391–396.

    Article  CAS  Google Scholar 

  • Huang, G., Bai, Z., Dai, S., & Xie, Q. (2004). Accumulation and toxic effect of organometallic compounds on algae. Applied Organometallic Chemistry, 7, 373–380.

    Article  Google Scholar 

  • IMO (International Maritime Organization). (2001). International convention on the control of harmful anti-fouling systems on ships, 2001. In International conference on the control of harmful anti-fouling systems for ships.

  • Jardin, T., & Bunn, S. (2010). Northern Australia, whither the mercury? Marine & Freshwater Research, 61, 451–463.

    Article  Google Scholar 

  • Johnston, E. L., Marizinelli, E. M., Wood, C. A., Speranza, D., & Bishop, J. D. D. (2011). Bearing the burden of boat harbours: Heavy contaminant and fouling loads in a native habitat-forming alga. Marine Pollution Bulletin, 62, 2137–2144.

    Article  CAS  Google Scholar 

  • Johnston, E., & Roberts, D. (2009). Contaminants reduce the richness and evenness of marine communities: A review and meta-analysis. Environmental Pollution, 157, 1745–1752.

    Article  CAS  Google Scholar 

  • Jones, B. G., Killian, H. E., Chenhall, B. E., & Sloss, C. R. (2003). Anthropogenic effects in a coastal lagoon: Geochemical characterisation of Burrill Lake, NSW, Australia. Journal of Coastal Research, 19, 621–632.

    Google Scholar 

  • Jones, D. E., & Turner, A. (2010). Bioaccessibility and mobilisation of copper and zinc in estuarine sediment contaminated by antifouling paint particles. Estuarine, Coastal and Shelf Science, 8, 399–404.

    Article  Google Scholar 

  • Koutsaftis, A., & Aoyama, I. (2006). The interactive effects of binary mixtures of three antifouling biocides and three heavy metals against the marine algae Chaetoceros gracilis. Environmental Toxicology, 21, 432–439.

    Article  CAS  Google Scholar 

  • Liston, P., & Maher, W. A. (1986). Trace metal export in urban runoff and its biological significance. Bulletin of Environmental Contamination and Toxicology, 36, 900–905.

    Article  CAS  Google Scholar 

  • Lobel, P. B., Mogie, P., Wright, D. A., & Wu, B. L. (1982). Gonadal and non-gonadal zinc concentrations in mussels. Marine Pollution Bulletin, 13, 320–332.

    Article  CAS  Google Scholar 

  • Lobel, P. B., & Wright, D. A. (1982). Metal accumulation in four molluscs. Marine Pollution Bulletin, 13, 170–174.

    Article  CAS  Google Scholar 

  • Mackey, N. J., Williams, R. J., Kacprzac, J. L., Kazacos, M. N., Collins, A. J., & Auty, E. H. (1975). Heavy metals in cultivated oysters (Crassostrea commercialis = Saccostrea cucullata) from the estuaries of New South Wales. Australian Journal of Marine and Freshwater Research, 26, 31–46.

    Article  Google Scholar 

  • Maher, W., Forstner, S., Krikowa, F., Snitch, P., Chapple, G., & Craig, P. (2001). Measurement of trace metals and phosphorus in marine animal and plant tissues by low volume microwave digestion and ICPMS. Journal of Analytical Atomic Spectrometry, 22, 361–369.

    CAS  Google Scholar 

  • Maher, W., Krikowa, F., Kirby, J., Townsend, A. T., & Snitch, P. (2003). Measurement of trace elements in marine environmental samples using solution ICPMS. Current and future applications. Australian Journal of Chemistry, 56, 103–116.

    Article  CAS  Google Scholar 

  • Maher, W. A., Maher, N., Taylor, A., Krikowa, F., Ubrihien, R., & Milac, K. M. (2016). The use of the marine gastropod, Cellana tramoserica as a biomonitor of metal contamination in near shore Environments. Environmental Monitoring and Assessment, 188, 391–406.

    Article  CAS  Google Scholar 

  • Matthiessen, P., & Gibbs, P. E. (1998). Critical appraisal of the evidence for tributyltin-mediated endocrine disruption in mollusks. Environmental Toxicology and Chemistry, 17, 37–43.

    Article  CAS  Google Scholar 

  • Matthiessen, P., Reed, J., & Johnson, M. (1999). Sources and potential effects of copper and zinc concentrations in the estuarine waters of Essex and Suffolk, United Kingdom. Marine Pollution Bulletin, 38, 908–920.

    Article  CAS  Google Scholar 

  • McAllister, T. L., Overton, M. F., & Brill, E. D., Jr. (1996). Cumulative impact of marinas on estuarine water quality. Environmental Management, 20, 385–396.

    Article  CAS  Google Scholar 

  • McCall, P. L., & Tevesz, M. J. S. (Eds.). (1982). Chapter 3. The effects of Benthos on physical properties of freshwater sediments. In Animal-sediment relationsThe biogenic alteration of sediments. Topics in Geobiology (Vol. 100, pp. 105–176). New York: Springer.

  • McCready, S., Birch, G. F., & Long, E. R. (2006). Metallic and organic contaminants in sediments of Sidney Harbour, Australia and vicinity: A chemical dataset for evaluating sediment quality guidelines. Environmental International, 32, 455–465.

    Article  Google Scholar 

  • McPherson, T. N., Burian, S. J., Stenstrom, M. K., Turin, H. J., Brown, M. J., & Suffet, I. H. (2005). Trace metal pollutant load in urban runoff from Southern California watershed. Journal of Environmental Engineering, 131, 1073–1080.

    Article  CAS  Google Scholar 

  • Meadows, P. S., & Tait, J. (1989). Modification of sediment permeability and shear strength by two burrowing invertebrates. Marine Biology, 101, 75–82.

    Article  Google Scholar 

  • Mikac, K. M., Maher, W. A., & Jones, A. R. (2007). Do physicochemical sediment variables and their soft sediment macrofauna differ among micro size coastal lagoons with forested and urban catchments? Estuarine and Coastal Shelf Science, 72, 308–318.

    Article  Google Scholar 

  • Munksgaard, N. C., & Parry, D. L. (2001). Trace metals, arsenic and lead isotopes in dissolved and particulate phases of North Australian coastal and estuarine seawater. Marine Chemistry, 75, 165–184.

    Article  CAS  Google Scholar 

  • Natural Heritage Trust. (2004). Tributyltin (TBT) analysis protocol development and current contamination assessment. A report from Natural Heritage Trust (Coasts and Clean Seas) Project No 25425 December 2004, Canberra.

  • Oades, J. M. (1988). The retention of organic matter in soils. Biogeochemistry, 5, 35–70.

    Article  CAS  Google Scholar 

  • Oberdorster, E., & McClellan-Green, P. (2002). Mechanisms of imposex induction in the mud snail, Ilyanassa obsoleta: TBT as a neurotoxin and aromatase inhibitor. Marine Environmental Research, 54, 715–718.

    Article  CAS  Google Scholar 

  • Packham, D., Tapper, N., Griepsma, D., Friedli, H., Hellings, J., & Harris, S. (2009). Release of mercury in the Australian environment by burning: A preliminary investigation of biomatter and soils. Air Quality and Climate Change, 43, 24–27.

    Google Scholar 

  • Phillips, D. J. H. (1977). The use of biological indicator organisms to monitor metal pollution in marine and estuarine environments-a review. Environmental Pollution, 13, 281–311.

    Article  CAS  Google Scholar 

  • Pipe, R. K., Coles, A., Carissan, F. M. M., & Ramanathan, K. (1999). Copper induced immunomodulation in the marine mussel, Mytilus edulis. Aquatic Toxicology, 46, 43–54.

    Article  CAS  Google Scholar 

  • Rhoads, D. C., & Boyer, L. F. (1982). The effects of marine benthos on physical properties of sediments: A successional perspective. In P. L. McCall & M. J. S. Tevesz (Eds.), Animal-sediment relations. New York: Plenum Press.

    Google Scholar 

  • Robinson, W. A., Maher, W. A., Krikowa, F., Nell, J. A., & Hand, R. (2005). The use of the oyster Saccostrea glomerata as a biomonitor of metal contamination: Intra-sample, local scale and temporal variability and its implications for biomonitoring. Journal of Environmental Monitoring, 7, 208–223.

    Article  CAS  Google Scholar 

  • Sanudo-Wilhelmy, S. A., & Flegalt, A. R. (1992). Anthropogenic silver in the Southern California Bight: A new tracer of sewage in coastal waters. Environmental Science and Technology, 26, 2147–2151.

    Article  CAS  Google Scholar 

  • Scanes, P. R., & Roach, A. C. (1999). Determining natural ‘background’ concentrations of metals in oysters from New South Wales, Australia. Environmental Pollution, 105, 437–446.

    Article  CAS  Google Scholar 

  • Showalter, S., & Savarese, J. (2004). Restrictions on the use of marine antifouling paints containing tributyltin and copper. CA: California Sea Grant Extension Program.

    Google Scholar 

  • Sim, V. X. Y., Dafforn, K. A., Simpson, S. L., Kelaher, B. P., & Johnston, E. L. (2015). Sediment contaminants and infauna associated with recreational boating structures in a multi-use marine park. PLoS ONE, 10, 1–15.

    Google Scholar 

  • Singh, N., & Turner, A. (2009). Metals in antifouling paint particles and their heterogeneous contamination of coastal sediments. Marine Pollution Bulletin, 58, 559–564.

    Article  CAS  Google Scholar 

  • Smith, P. J., & McVeagh, M. (1991). Widespread organotin pollution in New Zealand coastal waters as indicated by imposex in dogwhelks. Marine Pollution Bulletin, 22, 409–413.

    Article  CAS  Google Scholar 

  • Spooner, D., Maher, W., & Otway, N. (2003). Metal concentrations in sediments and oysters of Botany Bay, Australia. Archives of Environmental Contamination and Toxicology, 45, 92–101.

    Article  CAS  Google Scholar 

  • Tanabe, S. (1999). Butyltin contamination in marine mammals: A Review. Marine Pollution Bulletin, 39, 62–72.

    Article  CAS  Google Scholar 

  • Taylor, A., & Maher, W. (2003). The use of two marine gastropods, Austrocochlea constricta and Bembicium auratum as biomonitors of zinc, cadmium and copper exposure: Effects of mass, within and between site variability and net accumulation relative to environmental exposure. Journal of Coastal Research Progress Series, 19, 541–549.

    Google Scholar 

  • Telford, K., Maher, W., Krikowa, F., & Foster, S. (2008). Measurement of total antimony and antimony species in mine contaminated soils by ICPMS and HPLC-ICPMS. Journal of Environmental Monitoring, 10, 136–140.

    Article  CAS  Google Scholar 

  • Tessier, A., & Campbell, P. G. C. (1987). Partitioning of trace metals in sediments: Relationships with bioavailability. In R. L. Thomas, R. Evans, A. L. Hamilton, M. Munawar, T. B. Reynoldson, & M. H. Sadar (Eds.), Ecological effects of in situ sediment contaminants. Developments in hydrobiology (Vol. 39). Dordrecht: Springer.

    Google Scholar 

  • Tombacz, E. (2004). The role of reactive surface sites and complexation by humic acids in the interaction of clay minerals and iron oxide particles. Organic Geochemistry, 35, 257.

    Article  CAS  Google Scholar 

  • Turner, A. (1996). Trace-metal partitioning in estuaries: Importance of salinity and particle concentration. Marine Chemistry, 54, 27–39.

    Article  CAS  Google Scholar 

  • Turner, A. (2010). Marine pollution from antifouling paint particles. Marine Pollution Bulletin, 60, 159–171.

    Article  CAS  Google Scholar 

  • Turner, A., Millward, G. E., Schuchardt, B., Schirmer, M., & Prange, A. (1992). Trace metal distribution coefficients in the Weser estuary (Germany). Continental Shelf Research, 12, 1277–1292.

    Article  Google Scholar 

  • Ubrihien, R., Taylor, A. M., & Maher, W. A. (2016). Bioaccumulation, oxidative stress and cellular damage in the intertidal gastropod Bembicium namum exposed to a metal contamination gradient. Marine & Freshwater Research, 67, 1–9.

    Article  Google Scholar 

  • Underwood, A. C., & Chapman, M. G. (1995). Coastal marine ecology of temperate, Australia (pp. 1–341). Kensington: UNSW Press.

    Google Scholar 

  • Vogel, C., Kruger, O., Herzel, H., & Adam, C. (2016). Chemical state of mercury and selenium in sewage sludge ash-based P fertilizers. Journal of Hazardous Materials, 313, 179–184.

    Article  CAS  Google Scholar 

  • Voulvoulis, N., Scrimshaw, N. D., & Lester, J. N. (2002). Comparative environmental assessment of biocides used in antifouling paints. Chemosphere, 47, 789–795.

    Article  CAS  Google Scholar 

  • Walsh, K., Dunstan, R. H., Murdoch, R. N., Conroy, B. A., Roberts, T. K., & Lake, P. (1994). Bioaccumulation of pollutants and changes in population parameters in the gastropod mollusk Austrocochlea constricta. Archives of Environmental Contamination and Toxicology, 26, 367–373.

    Article  CAS  Google Scholar 

  • Wang, W., & Fisher, N. S. (1999). Delineating metal accumulation pathways for marine invertebrates. The Science of the Total Environment, 237(238), 459–472.

    Article  Google Scholar 

  • Wang, X., Wang, J., & Zhang, J. (2012). Comparisons of three methods for organic and inorganic carbon in calcareous soils of Northwestern China. PLoS ONE, 7, e44334.

    Article  CAS  Google Scholar 

  • Waring, J., Maher, W. A., & Krikowa, F. (2006). Trace metal bioaccumulation in eight common Australian polychaeta. Journal of Environmental Monitoring, 8, 1149–1157.

    Article  CAS  Google Scholar 

  • Warnken, J., Dunn, R. J. K., & Teasdale, P. R. (2004). Investigation of recreational boats as a source of copper at anchorage sites using time-integrated diffusive gradients in thin film and sediment measurements. Marine Pollution Bulletin, 49, 833–843.

    Article  CAS  Google Scholar 

  • Wood, M. A. (1983). Available copper ligands and the apparent bioavailability of copper to natural phytoplankton assemblages. Science of the Total Environment, 28, 51–64.

    Article  CAS  Google Scholar 

  • Zhuang, J., & Yu, G.-R. (2002). Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals. Chemosphere, 49, 619–628.

    Article  CAS  Google Scholar 

  • Zwolsman, J. J. G., Eck, B. T. M., & Van der Weijden, C. H. (1997). Geochemistry of dissolved metals in the Scheldt estuary, southwest Netherlands: Impact of seasonal variability. Geochimica et Cosmochimica Acta, 61, 1635–1652.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Maher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 359 kb)

Supplementary material 2 (DOCX 1805 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McVay, I.R., Maher, W.A., Krikowa, F. et al. Metal concentrations in waters, sediments and biota of the far south-east coast of New South Wales, Australia, with an emphasis on Sn, Cu and Zn used as marine antifoulant agents. Environ Geochem Health 41, 1351–1367 (2019). https://doi.org/10.1007/s10653-018-0215-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0215-8

Keywords

Navigation