Skip to main content
Log in

Toxicity assessment of copper by electrochemically active bacteria in wastewater

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

A bioelectrochemical sensor (BES) was constructed for toxicity assessment of copper in contaminated domestic sewage. Electrochemically active bacteria (EAB), whose growth was supported by the bioenergy generated from an in situ metallurgical process, functioned as the sensing elements. The external resistance of metallurgical BES was optimized based on linear sweep voltammetry analysis. The stabilized BES was utilized to monitor the copper toxicity in real wastewater. During the less than 1-h sensing period, copper concentration ranging from 1 to 5 mg L−1 could be detected. A power output of around 100 Wh (kg Cu)−1 and metallic copper resource were obtained simultaneously. This study demonstrated that the highly active EAB species enriched in metallurgical BES could be a promising candidate for rapid and reliable evaluation of copper toxicity in real domestic wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abourached, C., Catal, T., & Liu, H. (2014). Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Research, 51, 228–233.

    Article  CAS  Google Scholar 

  • Bourgeois, W., Burgess, J. E., & Stuetz, R. M. (2001). On-line monitoring of wastewater quality: A review. Journal of Chemical Technology and Biotechnology, 76(4), 337–348.

    Article  CAS  Google Scholar 

  • Cheng, S. A., Wang, B. S., & Wang, Y. H. (2013). Increasing efficiencies of microbial fuel cells for collaborative treatment of copper and organic wastewater by designing reactor and selecting operating parameters. Bioresource Technology, 147, 332–337.

    Article  CAS  Google Scholar 

  • ElMekawy, A., Hegab, H. M., Pant, D., & Saint, C. P. (2017). Bio-analytical applications of microbial fuel cell based-biosensors for onsite water quality monitoring. Journal of Applied Microbiology, 124(1), 302–313.

    Article  CAS  Google Scholar 

  • Feng, C. J., Hu, A. Y., Chen, S. H., & Yu, C. P. (2013). A decentralized wastewater treatment system using microbial fuel cell techniques and its response to a copper shock load. Bioresource Technology, 143, 76–82.

    Article  CAS  Google Scholar 

  • Gajaraj, S., & Hu, Z. Q. (2014). Integration of microbial fuel cell techniques into activated sludge wastewater treatment processes to improve nitrogen removal and reduce sludge production. Chemosphere, 117, 151–157.

    Article  CAS  Google Scholar 

  • Ha, P. T., Moon, H., Kim, B. H., Ng, H. Y., & Chang, I. S. (2010). Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage. Biosensors & Bioelectronics, 25(7), 1629–1634.

    Article  CAS  Google Scholar 

  • He, Z. (2013). Microbial fuel cells: Now let us talk about energy. Environmental Science and Technology, 47(1), 332–333.

    Article  CAS  Google Scholar 

  • Jia, H., Yang, G., Ngo, H. H., Guo, W. S., Zhang, H. W., Gao, F., et al. (2017). Enhancing simultaneous response and amplification of biosensor in microbial fuel cell-based upflow anaerobic sludge bed reactor supplemented with zero-valent iron. Chemical Engineering Journal, 327, 1117–1127.

    Article  CAS  Google Scholar 

  • Jiang, Y., Liang, P., Liu, P. P., Yan, X. X., Bian, Y. H., & Huang, X. (2017). A cathode-shared microbial fuel cell sensor array for water alert system. International Journal of Hydrogen Energy, 42(7), 4342–4348.

    Article  CAS  Google Scholar 

  • Jiang, Y., Liang, P., Zhang, C. Y., Bian, Y. H., Yang, X. F., Huang, X., et al. (2015). Enhancing the response of microbial fuel cell based toxicity sensors to Cu(II) with the applying of flow-through electrodes and controlled anode potentials. Bioresource Technology, 190, 367–372.

    Article  CAS  Google Scholar 

  • Kim, M., Hyun, M. S., Gadd, G. M., Kim, G. T., Lee, S. J., & Kim, H. J. (2009). Membrane-electrode assembly enhances performance of a microbial fuel cell type biological oxygen demand sensor. Environmental Technology, 30(4), 329–336.

    Article  CAS  Google Scholar 

  • Kumlanghan, A., Liu, J., Thavarungkul, P., Kanatharana, P., & Mattiasson, B. (2007). Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter. Biosensors & Bioelectronics, 22(12), 2939–2944.

    Article  CAS  Google Scholar 

  • Li, T., Wang, X., Zhou, L., An, J. K., Li, J. H., Li, N., et al. (2016). Bioelectrochemical sensor using living biofilm to in situ evaluate flocculant toxicity. ACS Sensors, 1(11), 1374–1379.

    Article  CAS  Google Scholar 

  • Liu, R., Gao, C. Y., Zhao, Y. G., Wang, A. J., Lu, S. S., Wang, M., et al. (2012). Biological treatment of steroidal drug industrial effluent generation in the microbial fuel cells. Bioresource Technology, 123, 86–91.

    Article  CAS  Google Scholar 

  • Logan, B. E. (2007). Microbial fuel cells. Hoboken, New Jersey: Wiley.

    Book  Google Scholar 

  • Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 7(5), 375–381.

    Article  CAS  Google Scholar 

  • Logan, B. E., & Elimelech, M. (2012). Membrane-based processes for sustainable power generation using water. Nature, 488(7411), 313–319.

    Article  CAS  Google Scholar 

  • Madoni, P., & Romeo, M. G. (2006). Acute toxicity of heavy metals towards freshwater ciliated protists. Environmental Pollution, 141(1), 1–7.

    Article  CAS  Google Scholar 

  • McCarty, P. L., Bae, J., & Kim, J. (2011). Domestic wastewater treatment as a net energy producer—Can this be achieved? Environmental Science and Technology, 45(17), 7100–7106.

    Article  CAS  Google Scholar 

  • MEP. (2002). Discharge standard of pollutants for municipal wastewater treatment plant (GB 18918-2002)—Ministry of Environmental Protection (MEP) of China.

  • Modin, O., Wang, X., Wu, X., Rauch, S., & Fedje, K. K. (2012). Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions. Journal of Hazardous Materials, 235–236, 291–297.

    Article  CAS  Google Scholar 

  • Modin, O., & Wilén, B. M. (2012). A novel bioelectrochemical BOD sensor operating with voltage input. Water Research, 46(18), 6113–6120.

    Article  CAS  Google Scholar 

  • NEA. (2015). Qualifying criteria for highly efficient water pollution. Singapore: National Environment Agency (NEA).

    Google Scholar 

  • Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A., & Forestier, C. (2002). Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. Plant Journal, 32(4), 539–548.

    Article  CAS  Google Scholar 

  • Seidl, M., Huang, V., & Mouchel, J. M. (1998). Toxicity of combined sewer overflows on river phytoplankton: The role of heavy metals. Environmental Pollution, 101(1), 107–116.

    Article  CAS  Google Scholar 

  • Shen, Y. J., Wang, M., Chang, I. S., & Ng, H. Y. (2013). Effect of shear rate on the response of microbial fuel cell toxicity sensor to Cu(II). Bioresource Technology, 136, 707–710.

    Article  CAS  Google Scholar 

  • Stein, N. E., Hamelers, H. M. V., van Straten, G., & Keesman, K. J. (2012). On-line detection of toxic components using a microbial fuel cell-based biosensor. Journal of Process Control, 22(9), 1755–1761.

    Article  CAS  Google Scholar 

  • Stein, N. E., Keesman, K. J., Hamelers, H. V. M., & van Straten, G. (2011). Kinetic models for detection of toxicity in a microbial fuel cell based biosensor. Biosensors & Bioelectronics, 26(7), 3115–3120.

    Article  CAS  Google Scholar 

  • Tao, H. C., Zhang, L. J., Gao, Z. Y., & Wu, W. M. (2011). Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor. Bioresource Technology, 102(22), 10334–10339.

    Article  CAS  Google Scholar 

  • Thomas, Y. R. J., Picot, M., Carer, A., Berder, O., Sentieys, O., & Barriere, F. (2013). A single sediment-microbial fuel cell powering a wireless telecommunication system. Journal of Power Sources, 241, 703–708.

    Article  CAS  Google Scholar 

  • Tront, J. M., Fortner, J. D., Plotze, M., Hughes, J. B., & Puzrin, A. M. (2008). Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosensors & Bioelectronics, 24(4), 586–590.

    Article  CAS  Google Scholar 

  • Wang, J., Zhang, Y., Wang, Y., Xu, R., Sun, Z., & Jie, Z. (2010). An innovative reactor-type biosensor for BOD rapid measurement. Biosensors & Bioelectronics, 25(7), 1705–1709.

    Article  CAS  Google Scholar 

  • Zhang, L. J., Gao, Y., Lai, L. K., & Li, S. F. Y. (2015). Whole-cell-based identification of electrochemically active bacteria in microbial fuel cells by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 29(23), 2211–2218.

    Article  CAS  Google Scholar 

  • Zhang, L. J., Tao, H. C., Wei, X. Y., Lei, T., Li, J. B., Wang, A. J., et al. (2012). Bioelectrochemical recovery of ammonia–copper(II) complexes from wastewater using a dual chamber microbial fuel cell. Chemosphere, 89(10), 1177–1182.

    Article  CAS  Google Scholar 

  • Zhou, T. Y., Han, H. W., Liu, P., Xiong, J., Tian, F. K., & Li, X. K. (2017). Microbial fuels cell-based biosensor for toxicity detection: A review. Sensors, 17(10), 2230. https://doi.org/10.3390/s17102230.

    Article  CAS  Google Scholar 

  • Zhang, Y. F., & Angelidaki, I. (2011). Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: Focusing on impact of anodic biofilm on sensor applicability. Biotechnology and Bioengineering, 108(10), 2339–2347.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National University of Singapore, National Research Foundation and Economic Development Board (SPORE, COY-15-EWI-RCFSA/N197-1) and Ministry of Education (R-143-000-519-112).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sam Fong Yau Li or Huchun Tao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8093 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, S.F.Y. & Tao, H. Toxicity assessment of copper by electrochemically active bacteria in wastewater. Environ Geochem Health 41, 81–91 (2019). https://doi.org/10.1007/s10653-018-0105-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0105-0

Keywords

Navigation