Skip to main content

Advertisement

Log in

The influence of physicochemical parameters on bioaccessibility-adjusted hazard quotients for copper, lead and zinc in different grain size fractions of urban street dusts and soils

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

When the hazard quotient for ingestion (HQI) of a trace element in soil and dust particles is adjusted for the element’s bioaccessibility, the HQI is typically reduced as compared to its calculation using pseudo-total element concentration. However, those studies have mostly used bulk particles (<2 mm or <250 µm), and the reduction in HQI when expressed as bioaccessible metal may not be similar among particle size fractions, the possibility probed by the present study of street dusts and soils collected in Tehran. The highest Cu, Pb and Zn near-total concentrations occurred in the finest particles of dusts and soils. Bioaccessible concentrations of Cu, Pb and Zn in the particles (mg kg−1) were obtained using simple bioaccessibility extraction test (SBET). The bioaccessibility (%) did not vary much among near-total concentrations. In the bulk (<250 µm) sample, the bioaccessible concentration of Cu and Pb increased as the pH of sample increased, while Zn bioaccessibility (%) in the bulk particles was influenced by organic matter and cation exchange capacity. X-ray diffraction identified sulfide and sulfate minerals in all of the size-fractionated particles, which are insoluble to slightly soluble in acidic conditions and included most of the Cu and Pb in the samples. The only Zn-bearing mineral identified was hemimorphite, which would be highly soluble in the SBET conditions. The calculated HQI suggested potential non-carcinogenic health risk to children and adults from ingestions of soils and dusts regardless of particle size consideration, in the order of Zn > Pb ≥ Cu. The HQI calculated from near-total metal was not much different for particle size classes relative to bulk particles; however, the bioaccessibility percent-adjusted HQI for Pb was higher for the smaller particles than the bulk. This work is novel in its approach to compare HQI for a bulk sample of particles with its composite particle size fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data from Iran Meteorological Organization (2015)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abouelnasr, D. M. (2010). The relationship between soil particle size and lead concentration. In Proceedings of the annual international conference on soils, sediments, water and energy (Vol. 8).

  • Abrahams, P. W. (2002). Soils: Their implications to human health. Science of the Total Environment, 291, 1–32.

    Article  CAS  Google Scholar 

  • Al-Chalabi, A., & Hawker, D. (1997). Response of vehicular lead to the presence of street dust in the atmospheric environment of major roads. Science of the Total Environment, 206, 195–202.

    Article  CAS  Google Scholar 

  • Artíñano, B., Salvador, P., Alonso, D. G., Querol, X., & Alastuey, A. (2003). Anthropogenic and natural influence on the PM 10 and PM 2.5 aerosol in Madrid (Spain). Analysis of high concentration episodes. Environmental Pollution, 125, 453–465.

    Article  CAS  Google Scholar 

  • Berglund, M., Lind, B., Sörensen, S., & Vahter, M. (2000). Impact of soil and dust lead on children’s blood lead in contaminated areas of Sweden. Archives of Environmental Health: An International Journal, 55, 93–97.

    Article  CAS  Google Scholar 

  • Bi, X., Liang, S., & Li, X. (2013). A novel in situ method for sampling urban soil dust: Particle size distribution, trace metal concentrations, and stable lead isotopes. Environmental Pollution, 177, 48–57.

    Article  CAS  Google Scholar 

  • Birmingham, B., & McLaughlin, D. (2006). Soil investigation and human health risk assessment for nickel in community soils near a former nickel refinery in Southern Ontario, Canada. Journal of Toxicology and Environmental Health, Part A, 69, 845–892.

    Article  CAS  Google Scholar 

  • Bish, D. L., & Post, J. E. (1989). Modern powder diffraction. Washington, DC: Mineralogical Society of America.

    Google Scholar 

  • Butte, W., & Heinzow, B. (2002). Pollutants in house dust as indicators of indoor contamination. Reviews of Environmental Contamination and Toxicology, 175, 1–46.

    CAS  Google Scholar 

  • Choate, L. M., Ranville, J. F., Bunge, A. L., & Macalady, D. L. (2006). Dermally adhered soil: 1. Amount and particle-size distribution. Integrated Environmental Assessment and Management, 2, 375–384.

    Article  CAS  Google Scholar 

  • Crawford, J. (2009). Solubility data on 646 common and not so common minerals. Retrieved from http://www.mindat.org/article.php/553/.

  • Dean, J. A. (1990). Lange’s handbook of chemistry. Material and manufacturing process, 5(4), 687–688.

  • Dehghani, S., Moore, F., Keshavarzi, B., & Hale, B. A. (2017). Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Ecotoxicology and Environmental Safety, 136(2017), 92–103.

    Article  CAS  Google Scholar 

  • Duggan, M., Inskip, M., Rundle, S., & Moorcroft, J. (1985). Lead in playground dust and on the hands of schoolchildren. Science of the Total Environment, 44, 65–79.

    Article  CAS  Google Scholar 

  • Duong, T. T., & Lee, B.-K. (2011). Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. Journal of Environmental Management, 92, 554–562.

    Article  CAS  Google Scholar 

  • Duruibe, J., Ogwuegbu, M., & Egwurugwu, J. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2, 112–118.

    Google Scholar 

  • Duzgoren-Aydin, N. S., Wong, C. S., Aydin, A., Song, Z., You, M., & Li, X. D. (2006). Heavy metal contamination and distribution in the urban environment of Guangzhou, SE China. Environmental Geochemistry and Health, 28, 375–391.

    Article  CAS  Google Scholar 

  • Ellickson, K., Meeker, R., Gallo, M., Buckley, B., & Lioy, P. (2001). Oral bioavailability of lead and arsenic from a NIST standard reference soil material. Archives of Environmental Contamination and Toxicology, 40, 128–135.

    Article  CAS  Google Scholar 

  • EPA. (2007). In vitro bioaccessibility testing: Current science and way forward (environmental agency science update 2). http://www.environment-agency.gov.uk/.

  • Ettler, V., Kříbek, B., Majer, V., Knésl, I., & Mihaljevič, M. (2012). Differences in the bioaccessibility of metals/metalloids in soils from mining and smelting areas (Copperbelt, Zambia). Journal of Geochemical Exploration, 113, 68–75.

    Article  CAS  Google Scholar 

  • Fosmire, G. J. (1990). Zinc toxicity. The American Journal of Clinical Nutrition, 51, 225–227.

    Article  CAS  Google Scholar 

  • Geebelen, W., Adriano, D., van der Lelie, D., Mench, M., Carleer, R., Clijsters, H., et al. (2003). Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils. Plant and Soil, 249, 217–228.

    Article  CAS  Google Scholar 

  • Geological Survey of Iran. (1986). http://www.gsi.ir/.

  • Gilbert, B. M., & Avenant-Oldewage, A. (2014). Arsenic, chromium, copper, iron, manganese, lead, selenium and zinc in the tissues of the largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913), from the Vaal Dam, South Africa, and associated consumption risks. Water SA, 40(4), 739–748.

    Article  CAS  Google Scholar 

  • Grøn, C., & Andersen, L. (2003). Human bioaccessibility of heavy metals and PAH from soil. Environmental project, (840), 1–113.

  • Gunawardana, C., Egodawatta, P., & Goonetilleke, A. (2014). Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces. Environmental Pollution, 184, 44–53.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001.

    Article  Google Scholar 

  • Hardy, M., & Cornu, S. (2006). Location of natural trace elements in silty soils using particle-size fractionation. Geoderma, 133, 295–308.

    Article  CAS  Google Scholar 

  • Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of paleolimnology, 25(1), 101–110.

  • Higgs, F. J., Mielke, H. W., & Brisco, M. (1999). Soil lead at elementary public schools: Comparison between school properties and residential neighbourhoods of New Orleans. Environmental Geochemistry and Health, 21, 27–36.

    Article  CAS  Google Scholar 

  • Ho, K. F., Lee, S. C., Chow, J. C., & Watson, J. G. (2003). Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong. Atmospheric Environment, 37, 1023–1032.

    Article  CAS  Google Scholar 

  • Iran Meteorological Organization. (2015). http://www.irimo.ir/.

  • Juhasz, A. L., Weber, J., & Smith, E. (2011). Impact of soil particle size and bioaccessibility on children and adult lead exposure in peri-urban contaminated soils. Journal of Hazardous Materials, 186, 1870–1879.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. New York: Springer.

    Book  Google Scholar 

  • Kim, J. Y., Kim, K. W., Lee, J. U., Lee, J. S., & Cook, J. (2002). Assessment of As and heavy metal contamination in the vicinity of Duckum Au–Ag mine, Korea. Environmental Geochemistry and Health, 24, 213–225.

    Article  Google Scholar 

  • Kramer, K. J., Brockmann, U. H., & Warwick, R. M. (1994). Tidal estuaries: Manual of sampling and analytical procedures. AA Balkema.

  • Kissel, J., Richter, K., & Fenske, F. (1996). Factors affecting soil adherence to skin in hand-press trials. Bulletin of Environmental Contamination and Toxicology, 56, 722–728.

    Article  CAS  Google Scholar 

  • Lamb, D. T., Ming, H., Megharaj, M., & Naidu, R. (2009). Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Journal of Hazardous Materials, 171, 1150–1158.

    Article  CAS  Google Scholar 

  • Lanphear, B. P., Burgoon, D. A., Rust, S. W., Eberly, S., & Galke, W. (1998). Environmental exposures to lead and urban children’s blood lead levels. Environmental Research, 76, 120–130.

    Article  CAS  Google Scholar 

  • Lee, B.-K., & Dong, T. T. (2011). Toxicity and source assignment of polycyclic aromatic hydrocarbons in road dust from urban residential and industrial areas in a typical industrial city in Korea. Journal of Material Cycles and Waste Management, 13, 34–42.

    Article  CAS  Google Scholar 

  • Leotsinidis, M., Alexopoulos, A., & Kostopoulou-Farri, E. (2005). Toxic and essential trace elements in human milk from Greek lactating women: association with dietary habits and other factors. Chemosphere, 61, 238–247.

    Article  CAS  Google Scholar 

  • Ljung, K., Selinus, O., Otabbong, E., & Berglund, M. (2006). Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Applied Geochemistry, 21, 1613–1624.

    Article  CAS  Google Scholar 

  • Madrid, F., Biasioli, M., & Ajmone-Marsan, F. (2008a). Availability and bioaccessibility of metals in fine particles of some urban soils. Archives of Environmental Contamination and Toxicology, 55, 21–32.

    Article  CAS  Google Scholar 

  • Madrid, F., Diaz-Barrientos, E., & Madrid, L. (2008b). Availability and bio-accessibility of metals in the clay fraction of urban soils of Sevilla. Environmental Pollution, 156, 605–610.

    Article  CAS  Google Scholar 

  • Mage, D., Ozolins, G., Peterson, P., Webster, A., Orthofer, R., Vandeweerd, V., et al. (1996). Urban air pollution in megacities of the world. Atmospheric Environment, 30, 681–686.

    Article  CAS  Google Scholar 

  • Medlin EA. (1997). An In Vitro Method for Estimating the Relative Bioavailability of Lead in Humans, MS Thesis. University of Colorado, Boulder, CO.

  • Mench, M., Vangronsveld, J., Beckx, C., & Ruttens, A. (2006). Progress in assisted natural remediation of an arsenic contaminated agricultural soil. Environmental Pollution, 144, 51–61.

    Article  CAS  Google Scholar 

  • Mercier, F., Glorennec, P., Thomas, O., & Bot, B. L. (2011). Organic contamination of settled house dust, a review for exposure assessment purposes. Environmental Science and Technology, 45, 6716–6727.

    Article  CAS  Google Scholar 

  • Metson, A. J. (1957). Methods of chemical analysis for soil survey samples. Soil Science, 83, 245.

    Article  Google Scholar 

  • Mielke, H., Gonzales, C., Smith, M., & Mielke, P. (1999). The urban environment and children’s health: soils as an integrator of lead, zinc, and cadmium in New Orleans, Louisiana, USA. Environmental Research, 81, 117–129.

    Article  CAS  Google Scholar 

  • Morrison, A. L., & Gulson, B. L. (2007). Preliminary findings of chemistry and bioaccessibility in base metal smelter slags. Science of the Total Environment, 382, 30–42.

    Article  CAS  Google Scholar 

  • Mossetti, S., Angius, S. P., & Angelino, E. (2005). Assessing the impact of particulate matter sources in the Milan urban area. International Journal of Environment and Pollution, 24, 247–259.

    Article  CAS  Google Scholar 

  • Norman, M., & Johansson, C. (2006). Studies of some measures to reduce road dust emissions from paved roads in Scandinavia. Atmospheric Environment, 40, 6154–6164.

    Article  CAS  Google Scholar 

  • Norra, S., Lanka-Panditha, M., Kramar, U., & Stüben, D. (2006). Mineralogical and geochemical patterns of urban surface soils, the example of Pforzheim, Germany. Applied Geochemistry, 21, 2064–2081.

    Article  CAS  Google Scholar 

  • Ogwuegbu, M., & Muhanga, W. (2005). Investigation of lead concentration in the blood of people in the copper belt province of Zambia. J Environ, 1, 66–75.

    Google Scholar 

  • Okorie, A., Entwistle, J., & Dean, J. R. (2012). Estimation of daily intake of potentially toxic elements from urban street dust and the role of oral bioaccessibility testing. Chemosphere, 86, 460–467.

    Article  CAS  Google Scholar 

  • Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., et al. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science and Technology, 36, 3326–3334.

    Article  CAS  Google Scholar 

  • Özkaynak, H., Xue, J., Zartarian, V. G., Glen, G., & Smith, L. (2011). Modeled estimates of soil and dust ingestion rates for children. Risk Analysis, 31(4), 592–608.

    Article  Google Scholar 

  • Paustenbach, D. J. (2000). The practice of exposure assessment: a state-of-the-art review. Journal of Toxicology and Environmental Health Part B: Critical Reviews, 3, 179–291.

    Article  CAS  Google Scholar 

  • Peltola, P., & Åström, M. (2003). Urban geochemistry: A multimedia and multielement survey of a small town in northern Europe. Environmental Geochemistry and Health, 25, 397–419.

    Article  CAS  Google Scholar 

  • Reis, A. P., Patinha, C., Wragg, J., Dias, A. C., Cave, M., Sousa, A. J., et al. (2014). Geochemistry, mineralogy, solid-phase fractionation and oral bioaccessibility of lead in urban soils of Lisbon. Environmental Geochemistry and Health, 36, 867–881.

    Article  CAS  Google Scholar 

  • Relative Bioavailability of Lead. (2007). Estimation of relative bioavailability of lead in soil and soil-like materials using in vivo and in vitro methods.

  • Rojas-Bracho, L., Suh, H. H., Oyola, P., & Koutrakis, P. (2002). Measurements of children’s exposures to particles and nitrogen dioxide in Santiago, Chile. Science of the Total Environment, 287, 249–264.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30, 422–430.

    Article  CAS  Google Scholar 

  • Ruby, M., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33, 3697–3705.

    Article  CAS  Google Scholar 

  • Ryan, J., Estefan, G., & Rashid, A. (2007). Soil and plant analysis laboratory manual. Beirut: ICARDA.

    Google Scholar 

  • Saeedi, M., & Pajooheshfar, S. P. (2012). Acid rain examination and chemical composition of atmospheric precipitation in Tehran, Iran. EnvironmentAsia, 5(1). doi:10.14456/ea.2012.5

  • SCHER, SCENIHR, SCCS. (2011). Toxicity and assessment of chemical mixtures. http://ec.europa.eu/health/scientific_committees/consultations/public_consultations/scher_consultation+06_en.tm.

  • Sheppard, S., & Evenden, W. (1994). Contaminant enrichment and properties of soil adhering to skin. Journal of Environmental Quality, 23, 604–613.

    Article  Google Scholar 

  • Siaka, M., Owens, C., & Birch, G. (1998). Evaluation of some digestion methods for the determination of heavy metals in sediment samples by flame-AAS. Analytical Letters, 31, 703–718.

    Article  CAS  Google Scholar 

  • Sialelli, J., Urquhart, G. J., Davidson, C. M., & Hursthouse, A. S. (2010). Use of a physiologically based extraction test to estimate the human bioaccessibility of potentially toxic elements in urban soils from the city of Glasgow, UK. Environmental Geochemistry and Health, 32, 517–527.

    Article  CAS  Google Scholar 

  • Siciliano, S. D., James, K., Zhang, G., Schafer, A. N., & Peak, J. D. (2009). Adhesion and enrichment of metals on human hands from contaminated soil at an Arctic urban brownfield. Environmental Science and Technology, 43, 6385–6390.

    Article  CAS  Google Scholar 

  • Staff, E. (2001). Supplemental guidance for developing soil screening levels for superfund sites, peer review draft (pp. 9355.4–9355.24). Washington, DC: US Environmental Protection Agency Office of Solid Waste and Emergency Response, OSWER.

  • Statistical Center of Iran (SCI). (2011). http://www.amar.org.ir.

  • Sutherland, R. A. (2003). Lead in grain size fractions of road-deposited sediment. Environmental Pollution, 121, 229–237.

    Article  CAS  Google Scholar 

  • Tang, R., Ma, K., Zhang, Y., & Mao, Q. (2013). The spatial characteristics and pollution levels of metals in urban street dust of Beijing, China. Applied Geochemistry, 35, 88–98.

    Article  CAS  Google Scholar 

  • Tehran Municipality (2015). Annual Internal Report. http://www.tehran.ir.

  • Thornton, I., Watt, J., Davies, D., Hunt, A., Cotter-Howells, J., & Johnson, D. (1994). Lead contamination of UK dusts and soils and implications for childhood exposure: An overview of the work of the Environmental Geochemistry Research Group, Imperial College, London, England 1981–1992. Environmental Geochemistry and Health, 16, 113–122.

    Article  CAS  Google Scholar 

  • Thorpe, A., & Harrison, R. M. (2008). Sources and properties of non-exhaust particulate matter from road traffic: A review. Science of the Total Environment, 400, 270–282.

    Article  CAS  Google Scholar 

  • US EPA. (1989). Risk assessment guidance for superfund. Human health evaluation manual (part A). Interim Final (Vol. 1). Washington (DC): United States Environmental Protection Agency, 540, 1–89.

  • US EPA. (2004). Integrated risk information system. http://www.epa.gov/iris. Accessed 28 November 2004.

  • US EPA (2007). Estimation of relative bioavailability of lead in soil and soil-like materials using in vivo and in vitro methods. US Environmental protection agency, office of solid waste and emergency response. OSWER 9285.7–77. Washington, DC.

  • US EPA. (2007). Guidance for evaluating the oral bioavailability of metals in soils for use in human health risk assessment. US Environmental Protection Agency, Office of solid waste and emergency response. OSWER 9285.7 80, Washington, DC.

  • US EPA. (2009). Risk-based concentration table Environmental Protection Agency, Philadelphia, PA, Washington, DC.

  • US EPA. (2010). Region 9, regional screening levels. http://www.epa.gov/region9/superfund/prg/index.html.

  • US Environmental Protection Agency. (2008). Standard operating procedure for an in vitro bioaccessibility assay for lead in soil. Office of Solid Waste and Emergency Response, US Environmental Protection Agency. EPA Washington, DC.

  • Wensing, M., Uhde, E., & Salthammer, T. (2005). Plastics additives in the indoor environment—Flame retardants and plasticizers. Science of the Total Environment, 339, 19–40.

    Article  CAS  Google Scholar 

  • Wilson, L (2009). Copper toxicity syndrome. Center for Development, 1.

  • Wragg, J., & Cave, M. (2003). In-vitro methods for the measurement of the oral bioaccessibility of selected metals and metalloids in soils: A critical review. Bristol: Environment Agency.

    Google Scholar 

  • Wragg, J., Cave, M., Basta, N., Brandon, E., Casteel, S., Denys, S., et al. (2011). An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Science of the Total Environment, 409, 4016–4030.

    CAS  Google Scholar 

  • Wragg, J., Cave, M., & Nathanail, P. (2007). A study of the relationship between arsenic bioaccessibility and its solid-phase distribution in soils from Wellingborough, UK. Journal of Environmental Science and Health Part A, 42, 1303–1315.

    Article  CAS  Google Scholar 

  • Xie, S., Dearing, J. A., & Bloemendal, J. (2000). The organic matter content of street dust in Liverpool, UK, and its association with dust magnetic properties. Atmospheric Environment, 34, 269–275.

    Article  CAS  Google Scholar 

  • Yamamoto, N., Takahashi, Y., Yoshinaga, J., Tanaka, A., & Shibata, Y. (2006). Size distributions of soil particles adhered to children’s hands. Archives of Environmental Contamination and Toxicology, 51, 157–163.

    Article  CAS  Google Scholar 

  • Yu, S., & Li, X.-D. (2011). Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: implications for assessing the risk to human health. Environmental Pollution, 159, 1317–1326.

    Article  CAS  Google Scholar 

  • Zheng, N., Liu, J., Wang, Q., & Liang, Z. (2010). Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Science of the Total Environment, 408, 726–733.

    Article  CAS  Google Scholar 

  • Zhuang, P., Li, Z. A., McBride, M. B., Zou, B., & Wang, G. (2013). Health risk assessment for consumption of fish originating from ponds near Dabaoshan mine, South China. Environmental Science and Pollution Research, 20(8), 5844–5854.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from BH from Canada’s Natural Sciences and Engineering Research Council (NSERC), from Vale Canada Ltd. and from Glencore Integrated Operations. The authors also greatly acknowledge technical and analytical support provided by the School of Environmental Sciences, University of Guelph. We are grateful to Ms. M. Saadati for assisting in the sampling and University of Shiraz research council to provide analytical support for physiochemical properties of samples. The authors also greatly thank Mr. Peter Smith, instrument laboratory manager at University of Guelph, for assistance in analytical projects and Dr. M. Thierry, University of Montreal, for XRD analysis of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharareh Dehghani.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani, S., Moore, F., Vasiluk, L. et al. The influence of physicochemical parameters on bioaccessibility-adjusted hazard quotients for copper, lead and zinc in different grain size fractions of urban street dusts and soils. Environ Geochem Health 40, 1155–1174 (2018). https://doi.org/10.1007/s10653-017-9994-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-9994-6

Keywords

Navigation