Skip to main content

Advertisement

Log in

Date palm waste-derived biochar composites with silica and zeolite: synthesis, characterization and implication for carbon stability and recalcitrant potential

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

A Correction to this article was published on 27 December 2017

This article has been updated

Abstract

Engineered organo-mineral composites were synthesized from date palm waste biochar and silica or zeolite via mechanochemical treatments. Date palm tree rachis (leaves) waste biomass was pre-treated with silica or zeolite minerals via ball milling and sonication prior to pyrolysis at 600 °C. The resultant organo-mineral composites and pristine materials were characterized using X-ray diffraction, thermogravimetric–differential thermal (TG–DTA), Fourier transform infrared, scanning electron microscope analyses and surface area and porosity analyzer to investigate the variations in physiochemical and structural characteristics. Compared to the resultant composites derived from non-milled date palm biomass, ball milling increased surface area, while decreased crystallinity index and effective particle size of the biochar composites. Silica composited biochars were located near origin in the van Krevelen diagram indicating lowest H/C and O/C molar ratios, thus suggesting higher aromaticity and lower polarity compared to other biochars. TGA thermograms indicated highest thermal stability of silica composited biochars. Ash and moisture corrected TGA thermograms were used to calculate recalcitrance index (R50) of the materials, which speculated high degradability of biomass (R50 < 0.4), minimal degradability of biochars and zeolite composited biochars (0.5 < R50 < 0.7) and high recalcitrant nature of silica composited biochars (R50 > 0.7). Silica composited biochars exhibited highest carbon sequestration potential (64.17–95.59%) compared to other biochars. Highest recalcitrance and carbon sequestration potential of silica composited biochars may be attributed to changes in structural arrangements in the silica–biochar complex. Encapsulations of biochar particles with amorphous silica via Si–C bonding may have prevented thermal degradation, subsequently increasing recalcitrance potential of silica composited biochars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 27 December 2017

    Unfortunately, in the original publication of the article, Prof. Yong Sik Ok’s affiliation was incorrectly published.

References

  • Ahmad, M., Moon, D. H., Vithanage, M., Koutsospyros, A., Lee, S. S., Yang, J. E., et al. (2014a). Production and use of biochar from buffalo-weed (Ambrosia trifida L.) for trichloroethylene removal from water. Journal of Chemical Technology and Biotechnology, 89, 150–157.

    Article  CAS  Google Scholar 

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, M., Mohan, D., et al. (2014b). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33.

    Article  CAS  Google Scholar 

  • Altland, J. E., Locke, J. C., & Krause, C. R. (2014). Influence of pine bark particle size and pH on cation exchange capacity. HortTechnology, 24, 554–559.

    Article  CAS  Google Scholar 

  • Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131, 374–379.

    Article  CAS  Google Scholar 

  • American Society for Testing and Materials (ASTM). (1989). Standard Methods for Chemical Analysis of Wood Charcoal, ASTM D1762-84, Philadelphia, PA, USA.

  • Antal, J. M. J., & Grönli, M. (2003). The art science, and technology of charcoal production. Industrial and Engineering Chemistry Research, 42, 1619–1640.

    Article  CAS  Google Scholar 

  • Bilgic, C. (2005). Investigation of the factors affecting organic cation adsorption on some silicate minerals. Journal of Colloid and Interface Science, 281, 33–38.

    Article  CAS  Google Scholar 

  • Blair, G. J., Lefroy, R. D. B., & Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46, 1459–1466.

    Article  Google Scholar 

  • Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M., & Hausler, R. (2008). Advances in principal factors influencing carbon dioxide adsorption on zeolite. Science and Technology of Advanced Materials, 9, 1–7.

    Article  CAS  Google Scholar 

  • Cheng, C. H., Lehmann, J., Thies, J. E., Burton, S. D., & Engelhard, M. H. (2006). Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry, 37, 1477–1488.

    Article  CAS  Google Scholar 

  • Deya, R. D., & Airoldi, C. (2008). Designed pendant chain covalently bonded to silica gel for cation removal. Journal of Hazardous Materials, 156, 95–101.

    Article  CAS  Google Scholar 

  • Fosso-kankeu, E., Waanders, F. B., Steyn, F. W. (2015). The preparation and characterization of clay-biochar composites for the removal of metal pollutants. In 7th International Conference on latest Trends in Engineering and Technology (ICLTET’2015), At Irene Pretoria South Africa, Volume: ISBN 978-93-84422-58-2. pp. 53–57.

  • Fowles, M. (2007). Black carbon sequestration as an alternative to bioenergy. Biomass and Bioenergy, 31, 426–432.

    Article  CAS  Google Scholar 

  • Greathouse, J. A., Johnson, K. L., & Greenwell, H. C. (2014). Interaction of natural organic matter with layered minerals: Recent developments in computational methods at the nanoscale. Minerals, 4, 519–540.

    Article  CAS  Google Scholar 

  • Guo, J., & Chen, B. (2014). Insights on the molecular mechanism for the recalcitrance of biochars: Interactive effects of carbon and silicon components. Environmental Science and Technology, 48, 9103–9112.

    Article  CAS  Google Scholar 

  • Gurses, A., Dogar, C., Yalcin, M., Acikyildiz, M., Bayrak, R., & Karaca, S. (2006). The adsorption kinetics of the cationic dye, methylene blue, onto clay. Journal of Hazardous Materials, 131, 217–228.

    Article  CAS  Google Scholar 

  • Harvey, O. R., Kuo, L. J., Zimmerman, A. R., Louchouarn, P., Amonette, J. E., & Herbert, B. E. (2012). An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environmental Science and Technology, 46, 1415–1421.

    Article  CAS  Google Scholar 

  • Hendershot, W. H., Lalande, H., & Duquette, M. (2008). Ion exchange and exchangeable cations. In M. R. Carter & E. G. Gregorich (Eds.), Soil sampling and methods of analysis (2nd ed., pp. 197–206). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Inyang, M., Gao, B., Pullammanappallil, P., Ding, W., & Zimmerman, A. R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology, 101, 8868–8872.

    Article  CAS  Google Scholar 

  • Izhevskyil, V. A., Genova, L. A., Bressiani, J. C., & Bressiani, A. H. A. (2000). Review article: Silicon carbide. Structure, properties and processing. Cerâmica, 46, 297. doi:10.1590/S0366-69132000000100002.

    Article  Google Scholar 

  • Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., et al. (2010). An investigation into the reactions of biochar in soil. Australian Journal of Soil Research, 48, 501–515.

    Article  CAS  Google Scholar 

  • Joseph, S., Graber, E. R., Chia, C., Munroe, P., Donne, S., Thomas, T., et al. (2013). Shifting paradigms: Development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Management, 4, 323–343.

    Article  CAS  Google Scholar 

  • Jouiad, M., Al-Nofeli, N., Khalifa, N., Benyettou, F., & Yousef, L. F. (2015). Characteristics of slow pyrolysis biochars produced from rhodes grass and fronds of edible date palm. Journal of Analytical and Applied Pyrolysis, 111, 183–190.

    Article  CAS  Google Scholar 

  • Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technology, 44, 1247–1253.

    Article  CAS  Google Scholar 

  • Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I., & Xu, X. (2009). Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology & Biochemistry, 41, 210–219.

    Article  CAS  Google Scholar 

  • Laird, D. A. (2008). The charcoal vision: A win win win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal, 100, 178–181.

    Article  Google Scholar 

  • Lal, R. (2003). Global potential of soil carbon sequestration to mitigate the greenhouse effect. Critical Reviews in Plant Sciences, 22, 151–184.

    Article  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Soils—the final Frontier. Science, 304, 1623–1627.

    Article  CAS  Google Scholar 

  • Lehmann, J. (2007). A handful of carbon. Nature, 447, 143–144.

    Article  CAS  Google Scholar 

  • Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems—A review. Mitigation and Adaptation Strategies for Global Change, 11, 403–427.

    Article  Google Scholar 

  • Lehmann, D. J., & Joseph, S. (2009). Biochar for environmental management: Science and technology London. Sterling, VA: Earthscans.

    Google Scholar 

  • Lehmann, J., Liang, B. Q., Solomon, D., Lerotic, M., Luiza˘o, F., Kinyangi, J., et al. (2005). Nearedge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: Application to black carbon particles. Global Biogeochemical Cycles, 19, GB1013. doi:10.1029/2004GB002435.

    Article  CAS  Google Scholar 

  • Lenton, T. M., & Vaughan, N. E. (2009). The radiative forcing potential of different climate geoengineering options. Atmospheric Chemistry and Physics Discussions, 9, 2559–2608.

    Article  Google Scholar 

  • Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., et al. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70, 1719–1730.

    Article  CAS  Google Scholar 

  • Liu, R., Shi, Y., Wan, Y., Meng, Y., Zhang, F., Gu, D., et al. (2006). Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas. Journal of the American Chemical Society, 128, 11652–11662.

    Article  CAS  Google Scholar 

  • Lowell, S., Shields, J. E., Thomas, M. A., & Thommes, M. (2004). Characterization of porous solids and powders: Surface area, pore size and density. In B. Scarlett (Ed.), Practicle Technology series. The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Mukherjee, A., Zimmerman, A. R., & Harris, W. (2011). Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 163, 247–255.

    Article  CAS  Google Scholar 

  • Murillo, J. D., Ware, E. A., & Biernacki, J. J. (2014). Characterization of milling effects on the physical and chemicalnature of herbaceous biomass with comparison of fast pyrolysisproduct distributions using Py-GC/MS. Journal of Analytical and Applied Pyrolysis, 108, 234–247.

    Article  CAS  Google Scholar 

  • Murray, H. H., & Lyons, S. C. (1959). Further correlations of kaolinite crystallinity with chemical and physical properties. Clays and Clay Minerals, 8, 11–17.

    Article  Google Scholar 

  • Odeh, A. O. (2015). Comparative study of the aromaticity of the coal structure during the cahr formation process under both conventional and advanced analytical techniques. Energy & Fuels, 29, 2676–2684.

    Article  CAS  Google Scholar 

  • Ok, Y. S., Chang, S. X., Gao, B., & Chung, H. J. (2015). SMART biochar technology—a shifting paradigm towards advanced materials and healthcare research. Environmental Technology and Innovation, 4, 206–209.

    Article  Google Scholar 

  • Qiu, M., Sun, K., Jin, J., Gao, B., Yan, Y., Han, L., et al. (2014). Properties of the plant- and manure-derived biochars and their sorption of dibutyl phthalate and phenanthrene. Scientific Reports, 4, 5295. doi:10.1038/srep05295.

    Article  CAS  Google Scholar 

  • Rajapaksha, A. U., Chen, S. S., Tsang, D. C. W., Zhang, M., Vithanage, M., Mandal, S., et al. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 148, 276–291.

    Article  CAS  Google Scholar 

  • Rawal, A., Joseph, S. D., Hook, J. M., Chia, C. H., Munroe, P. R., Donne, S., et al. (2016). Mineral–Biochar composites: Molecular structure and porosity. Environmental Science and Technology, 50, 7706–7714.

    Article  CAS  Google Scholar 

  • Rumpel, C., Gonzalez-Perez, J. A., Bardoux, G., Largeau, C., Gonzalez-Vila, F. J., & Valentin, C. (2007). Composition and reactivity of morphologically distinct charred materials left after slash-and-burn practices in agricultural tropical soils. Organic Geochemistry, 38, 911–920.

    Article  CAS  Google Scholar 

  • Scheirs, J., Camino, G., & Tumiatti, W. (2001). Overview of water evolution during the thermal degradation of cellulose. European Polymer Journal, 37, 933–942.

    Article  CAS  Google Scholar 

  • Schmidt, M. W. I., & Noack, A. G. (2000). Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles, 14, 777–793.

    Article  CAS  Google Scholar 

  • Spokas, K. A. (2010). Review of the stability of biochar in soils: Predictability of O: C molar ratios. Carbon Management, 1, 289–303.

    Article  CAS  Google Scholar 

  • Usman, A. R. A., Abduljabbar, A., Vithanage, M., Ok, Y. S., Ahmad, M., Ahmad, M., et al. (2015). Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. Journal of Analytical and Applied Pyrolysis, 115, 392–400.

    Article  CAS  Google Scholar 

  • Wang, Y., Lu, H., Liu, Y., & Yang, S. (2016). Removal of phosphate from aqueous solution by SiO2 biochar nanocomposites prepared by pyrolysis of vermiculite treated algal biomass. RSC Advances, 6, 83534–83546.

    Article  CAS  Google Scholar 

  • Windeatt, J. H., Ross, A. B., Williams, P. T., Forster, P. M., Nahil, M. A., & Singh, S. (2014). Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. Journal of Environmental Management, 146, 189–197.

    Article  CAS  Google Scholar 

  • Xiao, X., Chen, B., & Zhu, L. (2014). Transformation, morphology and dissolution of silicon and carbon in rice straw derived biochars under different pyrolytic temperatures. Environmental Science and Technology, 48, 3411–3419.

    Article  CAS  Google Scholar 

  • Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 1781–1788.

    Article  CAS  Google Scholar 

  • Yao, Y., Gao, B., Fang, J., Zhang, M., Chen, H., Zhou, Y., et al. (2014). Characterization and environmental applications of clay–biochar composites. Chemical Engineering Journal, 242, 136–143.

    Article  CAS  Google Scholar 

  • Zhao, L., Cao, X., Masek, O., & Zimmerman, A. (2013). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256–257, 1–9.

    Google Scholar 

  • Zimmerman, A. R., Gao, B., & Ahn, M. Y. (2011). Positive, negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology & Biochemistry, 43, 1169–1179.

    Article  CAS  Google Scholar 

  • Zimmermann, M., Bird, M. I., Wurster, C., Saiz, G., Goodrick, I., Barta, J., et al. (2012). Rapid degradation of pyrogenic carbon. Global Change Biology, 18, 3306–3316.

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research, King Saud University, for funding this work through the international research group project IRG-14-14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad I. Al-Wabel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, M., Ahmad, M., Usman, A.R.A. et al. Date palm waste-derived biochar composites with silica and zeolite: synthesis, characterization and implication for carbon stability and recalcitrant potential. Environ Geochem Health 41, 1687–1704 (2019). https://doi.org/10.1007/s10653-017-9947-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-9947-0

Keywords

Navigation