Skip to main content
Log in

Geochemical fingerprints of “Prosecco” wine based on major and trace elements

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The terroir can be defined as interactive ecosystem that includes climate, geology, soil and grapevine, and it is used to explain the hierarchy of high quality of wine. In order to understand the terroir functions, it is necessary to analyse the interactions among the geology, soil and wine. To define a geochemical fingerprint, the relationship between geochemistry of vineyard soil and chemical composition of wine from Veneto Italian Region was studied. The vineyards tested belonged to four distinct wineries located in the Veneto alluvial plain, included in the Controlled Designation of Origin (DOC) area of Prosecco. We investigated the relationship between major and trace elements in soil and their concentrations in Prosecco wine according to geographical origin. The detection of chemical composition in soil and wine were analysed by inductively coupled plasma mass spectrometry, and data were elaborated by nonparametric test and multivariate statistics Linear Discrimination Analysis. The geochemical and statistical analyses allowed to discriminate the vineyard soils according to geo-lithological characteristics of each area and to identify the geochemical “Prosecco” fingerprints, useful against fraudulent use of DOC wine labels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aceto, M., Robotti, E., Oddone, M., Baldizzone, M., Bonifacino, G., Bezzo, G., et al. (2013). A traceability study on the Moscato wine chain. Food Chemistry, 138, 1914–1922.

    Article  CAS  Google Scholar 

  • Almeida, C. M. R., & Vasconcelos, M. T. S. D. (2004). Does the winemaking process influence the wine. A case study 87Sr/86 Sr? Food Chemistry, 85, 7–12.

    Article  CAS  Google Scholar 

  • Álvarez, M., Moreno, I. M., Josa, A. M., Cameàn, A. M., & Gonzàlez, A. G. (2007). Study of mineral profile of Montilla-Moriles “fino” wines using inductively coupled plasma atomic emission spectrometry methods. Journal of Food Composition and Analysis, 20, 391–395.

    Article  Google Scholar 

  • Anjos, M. J., Lopes, R. T., de Jesus, E. F. O., Moreira, S., Barroso, R. C., & Castro, C. R. F. (2003). Trace elements determination in red and white wines using. Spectrochimica Acta Part B, 58, 2227–2232.

    Article  Google Scholar 

  • Barbi, A., Monai, M., Racca, R., & Rossa, A. M. (2012). Recurring features of extreme autumnal rainfall events on the Veneto coastal area. Natural Hazard Earth System Science, 12, 2463–2477.

    Article  Google Scholar 

  • Cadot, Y., Caillé, S., Thiollet-Scholtus, M., Samson, A., & Barbeau, G. (2012). Characterisation of typicality for wines related to terroir by conceptual and by perceptual representations. An application to red wines from the Loire Valley. Food Quality Preference, 24, 48–58.

    Article  Google Scholar 

  • Catarino, S., Maderira, M., Monteiro, F., Rocha, F., Curvelo-Garcia, A. S., & De Sousa, R. B. (2008). Effect of bentonite characteristics on the elemental composition of wine. Journal of Agricultural and Food Chemistry, 56, 158–165.

    Article  CAS  Google Scholar 

  • Censi, P., Saiano, F., Pisciotta, A., & Tuzzolino, N. (2014). Geochemical behaviour of rare earths in Vitis vinifera grafted onto different rootstocks and growing on several soils. Science of the Total Environment, 473–474, 597–608.

    Article  Google Scholar 

  • Coetzee, P. P., Steffens, F. E., Eiselen, R. J., Augustyn, O. P., Balcaen, L., & Vanhaecke, F. (2005). Multi-element analysis of South African wines by ICP-MS and their classification according to geographical origin. Journal of Agricultural and Food Chemistry, 53, 5060–5066.

    Article  CAS  Google Scholar 

  • Coetzee, P. P., Van Jaarsveld, F. P., & Vanhaecke, F. (2014). Intraregional classification of wine via ICP-MS elemental fingerprinting. Food Chemistry, 164, 485–492.

    Article  CAS  Google Scholar 

  • Costantini, E. A. C., Bucelli, P., & Priori, S. (2012). Quaternary landscape history determines the soil functional characters of terroir. Quaternary International, 265, 63–73.

    Article  Google Scholar 

  • Cugnetto, A., Santagostini, L., Rolle, L., Guidoni, S., Gerbi, V., & Novello, V. (2014). Tracing the “terroirs” via the elemental composition of leaves, grapes and derived wines in cv Nebbiolo (Vitis vinifera L.). Scientia Horticulturae, 172, 101–108.

    Article  CAS  Google Scholar 

  • D’Antone, C. D., Punturo, R., & Vaccaro, C. (2017). Rare earth elements distribution in grapevine varieties grown on volcanic soils: an example from Mount Etna (Sicily, Italy). Environmental Monitoring and Assessment. doi:10.1007/s10661-017-5878-6.

    Google Scholar 

  • Di Paola-Naranjo, R. D., Baroni, M. V., Podio, N. S., Rubinstein, H. R., Fabani, M. P., Badini, R. G., et al. (2011). Fingerprints for main varieties of Argentinean wines: Terroir differentiation by inorganic, organic, and stable isotopic analyses coupled to chemometrics. Journal of Agricultural and Food Chemistry, 59(14), 7854–7865.

    Article  Google Scholar 

  • Dougherty, P. H. (2012). The geography of wine. Regions, terroir and techniques. New York: Springer.

    Book  Google Scholar 

  • Fabani, M. P., Arrúa, R. C., Vázquez, F., Diaz, M. P., Baroni, M. V., & Wunderlin, D. A. (2010). Evaluation of elemental profile coupled to chemometrics to assess the geographical origin of Argentinean wines. Food Chemistry, 119, 372–379.

    Article  CAS  Google Scholar 

  • Fernández-Calviño, D., Rodríguez-Suárez, J. A., López-Periago, E., Arias-Estévez, M., & Simal-Gándara, J. (2008). Copper content of soils and river sediments in a winegrowing area, and its distribution among soil or sediment components. Geoderma, 145, 91–97.

    Article  Google Scholar 

  • Fregoni, M. (2013). Viticoltura di Qualità. Trattato dell’eccellenza da Terroir (3rd ed.). Milan: Tecniche Nuove.

    Google Scholar 

  • Galgano, F., Favati, F., Caruso, M., Scarpa, T., & Palma, A. (2008). Analysis of trace elements in southern Italian wines and their classification according to provenance. LWT Food Science and Technology, 41, 1808–1815.

    Article  CAS  Google Scholar 

  • Gonzalvez, A., & De La Guardia, M. (2013). Mineral profile. In M. De La Guardia & A. Gonzalvez (Eds.), Food protected designation of origin, methodologies and applications (pp. 51–76). Valencia: Elsevier.

    Chapter  Google Scholar 

  • Gonzálvez, A., Llorens, A., Cervera, M. L., Armenta, S., & De la Guardia, M. (2000). Elemental fingerprint of wines from the protected designation of origin Valencia. Food Chemistry, 112, 26–34.

    Article  Google Scholar 

  • Hooda, P. S. (2010). Trace elements in soils. Chichister: Wiley.

    Book  Google Scholar 

  • Hopfer, H., Nelson, J., Collins, T. S., Heymann, H., & Ebeler, S. E. (2015). The combined impact of vineyard origin and processing winery on the elemental profile of red wines. Food Chemistry, 172, 486–496.

    Article  CAS  Google Scholar 

  • Huang, P. M., Li, Y., & Sumner, M. E. (2012). Handbook of soil sciences (2nd ed.). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Huggett, J. M. (2006). Geology and wine: A review. Proceedings of the Geologists’ Association, 117, 239–247.

    Article  Google Scholar 

  • Iskandar, K., & Kirkham, M. B. (2001). Trace elements in soil: Bioavailability, flux, and transfer. Boca Raton, FL: CRC Press LLC.

    Book  Google Scholar 

  • Kabata-Pendias, A. (2004). Soil-plant transfer of trace elements—An environmental issue. Geoderma, 122, 143–149.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Kallithraka, S., Arvanitoyannis, I. S., Kefalas, P., & El-Zajouli, A. (2001). Instrumental and sensory analysis of Greek wines; implementation of principal component analysis (PCA) for classification according to geographical origin. Food Chemistry, 13, 501–514.

    Article  Google Scholar 

  • Komárek, M., Roho, M., Javorská, H., & Chrastný, V. (2008). Copper contamination of vineyard soils from small wine producers: A case study from the Czech Republic. Geoderma, 147, 16–22.

    Article  Google Scholar 

  • Kristensen, L. J., Taylor, M. P., & Evans, A. J. (2016). Tracing changes in atmospheric sources of lead contamination using lead isotopic compositions in Australian red wine. Chemosphere, 154, 40–47.

    Article  CAS  Google Scholar 

  • Lenglet, F. (2014). Influence of terroir products meaning on consumer’s expectations and likings. Food Quality Preference, 32, 264–270.

    Article  Google Scholar 

  • Marchionni, S., Braschi, E., Tommasini, S., Bollati, A., Cifelli, F., Mulinacci, N., et al. (2013). High-Precision 87 Sr/86 Sr analyses in wines and their use as a geological fingerprint for tracing geographic provenance. Journal of Agricultural and Food Chemistry, 61, 6822–6831.

    Article  CAS  Google Scholar 

  • Marengo, E., & Aceto, M. (2003). Statistical investigation of the differences in the distribution of metals in Nebbiolo based wines. Food Chemistry, 8, 621–630.

    Article  Google Scholar 

  • Martin, A. E., Watling, R. J., & Garry, S. L. (2012). The multi-element determination and regional discrimination of Australian wines. Food Chemistry, 133, 1081–1089.

    Article  CAS  Google Scholar 

  • Mercurio, M., Grilli, E., Odierna, P., Morra, V., Prohaska, T., Coppola, E., et al. (2014). A “Geo-Pedo-Fingerprint” (GPF) as a tracer to detect univocal parent material-to-wine production chain in high quality vineyard districts, Campi Flegrei (Southern Italy). Geoderma, 230–231, 64–78.

    Article  Google Scholar 

  • Pepi, S., Coletta, A., Crupi, P., Leis, M., Russo, S., Sansone, L., et al. (2016a). Geochemical characterization of elements in Vitis vinifera cv. Negroamaro grape berries grown under different soil managements. Environmental Monitoring and Assessment, 188, 211–218.

    Article  Google Scholar 

  • Pepi, S., Sansone, L., Chicca, M., Marrocchino, E., & Vaccaro, C. (2016b). Distribution of rare earth elements in soil and grape berries of Vitis vinifera cv. “Glera”. Environmental Monitoring and Assessment, 188, 477–487.

    Article  Google Scholar 

  • Pepi, S., Sansone, L., Chicca, M., & Vaccaro, C. (2017). Relationship among geochemical elements in soil and grapes as terroir finger printings in Vitis vinifera L. cv. “Glera”. Chemie der Erde-Geochemistry. doi:10.1016/j.chemer.2017.01.003.

    Google Scholar 

  • Petrini, R., Sansone, L., Slejko, F. F., Buccianti, A., Marcuzzo, P., & Tomasi, D. (2014). The 87Sr/86Sr strontium isotopic systematics applied to Glera vineyards: A tracer for the geographical origin of the Prosecco. Food Chemistry, 170, 138–144.

    Article  Google Scholar 

  • Pii, Y., Zamboni, A., Dal Santo, S., Pezzotti, M., Varanini, Z., & Pandolfini, T. (2017). Prospect on ionomic signatures for the classification of grapevine berries according to their geographical origin. Frontiers in Plant Science, 8, 1–7.

    Article  Google Scholar 

  • Pisciotta, A., Tutone, L., & Saiano, F. (2017). Distribution of YLOID in soil-grapevine system (Vitis vinifera L.) as tool for geographical characterization of agro-food products. A two years case study on different grafting combinations. Food Chemistry, 221, 1214–1220.

    Article  CAS  Google Scholar 

  • Pohl, P. (2007). What do metals tell us about wine? Trends in Analytical Chemistry, 26, 941–949.

    Article  CAS  Google Scholar 

  • Rencher, A. C. (2002). Methods of multivariate analysis. New York: Wiley.

    Book  Google Scholar 

  • Ribereau-Gayon, A. P., Dubourdieu, D., Doneche, B., & Lonvaud, A. (2006a). Handbook of Enology. Volume 1. The microbiology of wine and vinifications (2nd ed.). Chichister: Wiley.

    Google Scholar 

  • Ribereau-Gayon, A. P., Dubourdieu, D., Doneche, B., & Lonvaud, A. (2006b). Handbook of Enology. Volume 2. The chemistry of wine stabilization and treatments (2nd ed.). Chichister: Wiley.

    Book  Google Scholar 

  • Rodrigues, M., Otero, M., Alves, A., Coimbra, J., Coimbra, M. A., Pereira, E., et al. (2011). Elemental analysis for categorization of wines and authentication of their certified brand of origin. Journal of Food Composition and Analysis, 24, 548–562.

    Article  CAS  Google Scholar 

  • Roullier-Gall, C., Boutegrabet, L., Gougeon, R. D., & Schmitt-Kopplin, P. (2014). A grape and wine chemodiversity comparison of different appellations in Burgundy: Vintage vs terroir effects. Food Chemistry, 152, 100–107.

    Article  CAS  Google Scholar 

  • Scollary, G. R. (1997). Metals in wine: Contamination, spoilage and toxicity. Analysis, 25, 26–30.

    Google Scholar 

  • Tomasi, D., Gaiotti, F., & Jones, G.V. (2010). The power of the terroir: the case study of Prosecco wine. Basel: Springer.

    Google Scholar 

  • Van Leeuwen, C., & Seguin, G. (2006). The concept of terroir in viticulture. Journal of Wine Research, 17, 1–10.

    Article  Google Scholar 

  • Versari, A., Felipe Laurie, V., Riccia, A., Laghi, L., & Parpinello, G. P. (2014). Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Research International, 60, 2–18.

    Article  CAS  Google Scholar 

  • Volpe, M. G., La Cara, F., Volpe, F., De Mattia, A., Petitto, F., Di Stasio, M., et al. (2009). Heavy metal uptake in the enological food chain. Food Chemistry, 117, 553–560.

    Article  CAS  Google Scholar 

  • Vrček, I. V., Bojić, M., Žuntar, I., Mendaš, G., & Medić-Šarić, M. (2011). Phenol content, antioxidant activity and metal composition of Croatian wines deriving from organically and conventionally grown grapes. Food Chemistry, 124, 354–361.

    Article  Google Scholar 

  • Wilson, J. A. (1998). Terroir: The role of geology climate, and culture in the making of French wines (Wine Wheels). Hardcover.

Download references

Acknowledgements

The authors owe thanks to Mr. Renzo Tassinari for technical advice and experimental support, Dr. Milvia Chicca for useful suggestions, and Mr. Salvatore Cavaleri for elaboration of geological maps. The authors also wish to thank Mr. Luigi Sansone and the personnel of Council for Agricultural Research and Economics (CREA) for their support in the sampling campaign. This study was funded by the Centro Regionale per la Viticoltura, l’Enologia e la Grappa (Conegliano, Treviso), project 2014-09-WLIVVV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmela Vaccaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pepi, S., Vaccaro, C. Geochemical fingerprints of “Prosecco” wine based on major and trace elements. Environ Geochem Health 40, 833–847 (2018). https://doi.org/10.1007/s10653-017-0029-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-0029-0

Keywords

Navigation