Skip to main content
Log in

Measuring the solid-phase fractionation of lead in urban and rural soils using a combination of geochemical survey data and chemical extractions

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The study used 276 urban soils and 447 rural soils collected from in and around the UK town of Northampton and focussed on the fractionation of Pb. The Pb fractionation obtained from total element data was compared to the fractionation of Pb in a subset of 10 urban soils obtained using a sequential extraction method. The fractionation of the Pb from the total element data and from the sequential extractions was estimated using a self-modelling mixture resolution statistical model. The bioaccessibility of Pb in a subset of 50 of the urban soils, as measured using the unified BARGE method, was shown to be quantitatively linked with Pb fractionation from both the total element and the sequential extraction data. Three intrinsic soil components from the regional total element data model and one physico-chemical component from the sequential extraction data model were identified as the sources of bioaccessible Pb. The source of bioaccessible Pb in both rural and urban soils was tentatively identified as a fine-grained pyromorphite mineral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abollino, O., Malandrino, M., Giacomino, A., & Mentasti, E. (2011). The role of chemometrics in single and sequential extraction assays: A review: Part I. Extraction procedures, uni- and bivariate techniques and multivariate variable reduction techniques for pattern recognition. Analytica Chimica Acta, 688(2), 104–121. doi:10.1016/j.aca.2010.12.020.

    Article  CAS  Google Scholar 

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.

    Article  Google Scholar 

  • Allen, M. A., Cave, M. R., Chenery, S. R. N., Gowing, C. J. B., & Reeder, S. (2011). Sample preparation and inorganic analysis for urban geochemical survey soil and sediment samples. In C. C. Johnson, A. Demetriades, J. Locutura & R. T. Ottesen (Eds.), Mapping the chemical environment of urban areas (pp. 28–46). Wiley.

  • Ander, E. L., Johnson, C. C., Cave, M. R., Palumbo-Roe, B., Nathanail, C. P., & Lark, R. M. (2013). Methodology for the determination of normal background concentrations of contaminants in English soil. Science of the Total Environment, 454455(0), 604–618, doi:http://dx.doi.org/10.1016/j.scitotenv.2013.03.005.

  • Bacon, J. R., & Davidson, C. M. (2008). Is there a future for sequential chemical extraction? Analyst, 133, 25–46.

    Article  CAS  Google Scholar 

  • Broadway, A., Cave, M. R., Wragg, J., Fordyce, F. M., Bewley, R. J. F., Graham, M. C., et al. (2010). Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. Science of the Total Environment, 409, 267–277. doi:10.1016/j.scitotenv.2010.09.007.

    Article  CAS  Google Scholar 

  • Caboche, J. (2009). Validation d’un test de mesure de bioaccessibilité. Application à quatre éléments traces métallique dans les sols: As,Cd, Pb et Sb. Nancy: L’Institut National Polytechnique de Lorraine.

    Google Scholar 

  • Calabrese, E. J., Stanek, E. J., & Barnes, R. (1997). Soil ingestion rates in children identified by parental observation as likely high soil ingesters. Journal of Soil Contamination, 6(3), 271–279.

    Article  CAS  Google Scholar 

  • Cave, M. (2008). The use of self modelling mixture resolution methods for the interpretation of geochemical data sets British Geological Survey, IR/08/035.

  • Cave, M. R., Milodowski, A. E., & Friel, E. N. (2004). Evaluation of a method for identification of host physico-chemical phases for trace metals and measurement of their solid-phase partitioning in soil samples by nitric acid extraction and chemometric mixture resolution. Geochemistry: Exploration, Environment, Analysis, 4, 71–86.

    CAS  Google Scholar 

  • Cave, M. R., & Wragg, J. (1997). Measurement of trace element distributions in soils and sediments using sequential leach data and a non-specific extraction system with chemometric data processing. Analyst, 122(11), 1211–1221.

    Article  Google Scholar 

  • Cave, M. R., Wragg, J., Denys, S., Jondreville, C., & Feidt, C. (2011). Oral bioavailability. In F. Swartjes (Ed.), Dealing with contaminated sites: From theory towards practical application. Berlin: Springer.

    Google Scholar 

  • Cave, M. R., Wragg, J., & Harrison, H. (2013). Measurement modelling and mapping of arsenic bioaccessibility in Northampton, UK. Journal of Environmental Science and Health Part A, 48(6), 629–640.

    Article  CAS  Google Scholar 

  • Chen, C., Dynes, J. J., Wang, J., Karunakaran, C., & Sparks, D. L. (2014). Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions. Environmental Science and Technology, 48(12), 6678–6686. doi:10.1021/es405485a.

    Article  CAS  Google Scholar 

  • Cornell, R. M., & Schwertmann, U. (1996). The iron oxides—Structure properties, reactions, occurrences and uses. Weinheim: VCH Publishers.

    Google Scholar 

  • Cotter-Howells, J. D., Champness, P. E., Charnocky, J. M., & Pattrick, R. A. D. (1994). Identification of pyromorphite in mine-waste contaminated soils by ATEM and EXAFS. European Journal of Soil Science, 45(4), 393–402. doi:10.1111/j.1365-2389.1994.tb00524.x.

    Article  CAS  Google Scholar 

  • Debela, F., Arocena, J. M., Thring, R. W., & Whitcombe, T. (2010). Organic acid-induced release of lead from pyromorphite and its relevance to reclamation of Pb-contaminated soils. Chemosphere, 80(4), 450–456. doi:10.1016/j.chemosphere.2010.04.025.

    Article  CAS  Google Scholar 

  • Denys, S., Caboche, J., Tack, K., Rychen, G., Wragg, J., Cave, M., et al. (2012). In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environmental Science and Technology, 46, 6252–6260. doi:10.1021/es3006942.

    Article  CAS  Google Scholar 

  • Duggan, M. J., Inskip, M. J., Rundle, S. A., & Moorcroft, J. S. (1985). Lead in playground dust and on the hands of schoolchildren. Science of the Total Environment, 44(1), 65–79.

    Article  CAS  Google Scholar 

  • Flight, D. M. A., & Scheib, A. J. (2011). Soil geochemical baselines in UK urban centres: The G-BASE project. In C. Johnson, A. Demetriades, J. Locutura, & R. T. Ottesen (Eds.), Mapping the chemical environment of urban areas (pp. 186–206). Oxford: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Hettiarachchi, G. M., & Pierzynski, G. M. (2004). Soil lead bioavailability and in situ remediation of lead-contaminated soils: A review. Environmental Progress, 23(1), 78–93. doi:10.1002/ep.10004.

    Article  CAS  Google Scholar 

  • Johnson, C. C. (2011). Understanding the quality of chemical data from the urban environment—Part 1: Quality control procedures. In C. C. Johnson, A. Demetriades, J. Locutura, & R. T. Ottesen (Eds.), Mapping the chemical environment of urban areas (pp. 61–76). Oxford: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Johnson, C. C., Breward, N., Ander, E. L., & Ault, L. (2005). G-BASE: Baseline geochemical mapping of Great Britain and Northern Ireland. Geochemistry: Exploration, Environment, Analysis, 5(4), 347–357.

    Google Scholar 

  • Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., et al. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science and Technology, 36(15), 3326–3334.

    Article  CAS  Google Scholar 

  • Pelfrene, A., Waterlot, C., Mazzuca, M., Nisse, C., Bidar, G., & Francis, D. (2011). Assessing Cd, Pb, Zn human bioaccessibility in smelter-contaminated agricultural topsoils (northern France). Environmental Geochemistry and Health, 33, 477–493.

    Article  CAS  Google Scholar 

  • R Development Core Team. (2011). R: A language and environment for statistical computing. Vienna, Austria.: R Foundation for Statistical Computing.

    Google Scholar 

  • Roussel, H., Waterlot, C., Pelfrene, A., Pruvot, C., Mazzuca, M., & Douay, F. (2010). Cd, Pb and Zn oral bioaccessibility of urban soils contaminated in the past by atmospheric emissions from two lead and zinc smelters. Archives of Environmental Contamination and Toxicology, 58(4), 945–954.

    Article  CAS  Google Scholar 

  • Scheckel, K. G., Ryan, J. A., Allen, D., & Lescano, N. V. (2005). Determining speciation of Pb in phosphate-amended soils: Method limitations. Science of the Total Environment, 350(1–3), 261–272. doi:http://dx.doi.org/10.1016/j.scitotenv.2005.01.020.

  • Tang, X. Y., Zhu, Y. G., Chen, S. B., Tang, L. L., & Chen, X. P. (2004). Assessment of the effectiveness of different phosphorus fertilizers to remediate Pb-contaminated soil using in vitro test. Environment International, 30(4), 531–537. doi:10.1016/j.envint.2003.10.008.

    Article  CAS  Google Scholar 

  • Watts, M. J., Button, M., Brewer, T. S. D., Jenkin, G. R. T., & Harrington, C. F. (2008). Quantitative arsenic speciation in two species of earthworms from a former mini site. Journal of Environmental Monitoring, 10, 753–759.

    Article  CAS  Google Scholar 

  • Wragg, J. (2009). BGS Guidance material 102, ironstone soil, certificate of analysis. British geological survey, IR/09/006.

  • Wragg, J., & Cave, M. R. (2012). Assessment of a geochemical extraction procedure to determine the solid phase fractionation and bioaccessibility of potentially harmful elements in soils: A case study using the NIST 2710 reference soil. Analytica Chimica Acta, 722, 43–54. doi:10.1016/j.aca.2012.02.008.

    Article  CAS  Google Scholar 

  • Wragg, J., Cave, M. R., Basta, N., Brandon, E., Casteel, S., Denys, S., et al. (2011). An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Science of the Total Environment, 409, 4016–4030.

    CAS  Google Scholar 

  • Wragg, J., Cave, M., & Nathanail, P. (2007). A study of the relationship between arsenic bioaccessibility and its solid-phase distribution in soils from Wellingborough, UK. Journal of Environmental Science and Health Part A, 42(9), 1303–1315.

    Article  CAS  Google Scholar 

  • Wragg, J., Cave, M., Taylor, H., Basta, N., Brandon, E., Casteel, S., et al. (2009). Interlaboratory trial of a unified bioaccessibility procedure. Open. Nottingham: British Geological Survey.

    Google Scholar 

  • Xie, L., & Giammar, D. E. (2007). Equilibrium solubility and dissolution rate of the lead phosphate chloropyromorphite. Environmental Science and Technology, 41(23), 8050–8055. doi:10.1021/es071517e.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is published with permission of the Executive Director of the British Geological Survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Cave.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cave, M., Wragg, J., Gowing, C. et al. Measuring the solid-phase fractionation of lead in urban and rural soils using a combination of geochemical survey data and chemical extractions. Environ Geochem Health 37, 779–790 (2015). https://doi.org/10.1007/s10653-015-9697-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9697-9

Keywords

Navigation