Skip to main content

Advertisement

Log in

The effects of salt exclusion during ice formation on circulation in lakes

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Laboratory experiments have been performed to investigate the effects of salt exclusion on the behaviour of lakes with salinities up to 8 g L−1. At these salinities the freezing temperature is less than the temperature of maximum density and, unlike sea-ice, a reverse temperature stratification forms beneath the ice that can support at least some of the excluded salt. Temperature time series at four depths showed that salt exclusion drives cascades of localised overturning, while the persistence of reverse temperature stratification indicated that mixing was not complete. While our array of temperature sensors had insufficient spatial resolution to provide full details of the flow, we hypothesize that: at salinities of 1 and 2 g L−1  salt is released relatively uniformly and forms a layer of elevated salinity immediately below the ice, which supports double-diffusive salt-fingering; and at salinities of 4 and 8 g L−1, salt plumes penetrate the reverse stratification. After the ice melted, a relatively fresh surface layer formed above a more saline layer, sufficient to suppress spring turnover. Our measurements compare favourably with field observations from lakes, and highlight the importance of salt exclusion on biogeochemical processes in lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams CM Jr, French DN, Kingery WD (1960) Solidification of sea ice. J Glaciol 3:745–761

    Article  Google Scholar 

  2. Anderson DL (1961) Growth rate of sea ice. J Glaciol 3(30):1170–1172

    Article  Google Scholar 

  3. Ashton GD (1989) Thin ice growth. Water Resour Res 25(3):564–566. doi:10.1029/WR025i003p00564

    Article  Google Scholar 

  4. Belzile C, Gibson JAE, Vincent WF (2002) Colored dissolved organic matter and dissolved organic carbon exclusion from lake ice: implications for irradiance transmission and carbon cycling. Limnol Oceanogr 47(5):1283–1293. doi:10.4319/lo.2002.47.5.1283

    Article  Google Scholar 

  5. Carmack E (1990) Large-scale oceanography of polar oceans. In: Smith W (ed) Polar Oceans. Academic, Cambridge, pp 171–222

    Chapter  Google Scholar 

  6. Chen CT, Millero FJ (1986) Precise thermodynamic properties for natural waters covering only the limnological range. Limnol Oceanogr 31:657–662

    Article  Google Scholar 

  7. Dugan HA, Lamoureux SF (2011) The chemical development of a hypersaline coastal basin in the High Arctic. Limnol Oceanogr 56(2):495–507. doi:10.4319/lo.2011.56.2.0495

    Article  Google Scholar 

  8. Fisher TSR, Lawrence GA (2006) Treatment of acid rock drainage in a meromictic mine pit lake. J Environ Eng 132(4):515–526. doi:10.1061/(ASCE)0733-9372(2006)132:4(515)

    Article  Google Scholar 

  9. Forrest AL, Laval BE, Pieters R, Lim DSS (2008) Convectively driven transport in temperate lakes. Limnol Oceanogr 53:2321–2332. doi:10.4319/lo.2008.53.5_part_2.2321

    Article  Google Scholar 

  10. Gibson JAE (1999) The meromictic lakes and stratified marine basins of the Vestfold Hills, East Antarctica. Antarct Sci 11(2):175–192. doi:10.1017/S0954102099000243

    Article  Google Scholar 

  11. Kirillin G, Lepparanta M, Terzhevik A, Granin N, Bernhardt J, Engelhardt C, Efremova T, Golosov S, Palshin N, Sherstyankin P, Zdorovennova G, Zdorovennov R (2012) Physics of seasonally ice-covered lakes: a review. Aquat Sci 74(4):659–682. doi:10.1007/s00027-012-0279-y

    Article  Google Scholar 

  12. Lawrence GA, Tedford EW, Pieters R (2016) Suspended solids in an end pit lake: potential mixing mechanisms. Can J Civ Eng 43(3):211–217. doi:10.1139/cjce-2015-0381

    Article  Google Scholar 

  13. Lide DR (ed) (2006) CRC handbook of chemistry and physics, 86th edn. CRC Press, pp 5–71, 5–73, 8–66

  14. Mironov D, Terzhevik A, Kirillin G, Jonas T, Malm J, Farmer D (2002) Radiatively driven convection in ice-covered lakes: Observations, scaling, and a mixed layer model. J Geophys Res 107:16 pp., doi:10.1029/2001JC000892. http://www.agu.org/journals/ABS/2002/2001JC000892.shtml

  15. Ouellet M, Pagé P (1987) Comments on “Hypersaline gradients in two Canadian High Arctic Lakes” by K. M. Stewart and R. F. Platford. Can J Fish Aquat Sci 44:1676–1680

  16. Pagé P, Ouellet M, Hillaire-Marcel C, Dickman M (1984) Isotopic analyses \(({}^{18} \text{ O }, {}^{13} \text{ C }, {}^{14}\text{ C })\). Limnol Oceanogr 29(3):564–573. doi:10.4319/lo.1984.29.3.0564

    Article  Google Scholar 

  17. Pawlowicz R (2008) Calculating the conductivity of natural waters. Limnol Oceanogr Methods 6:489–501

    Article  Google Scholar 

  18. Pieters R, Lawrence GA (2009) Effect of salt exclusion from lake ice on seasonal circulation. Limnol Oceanogr 54(2):401–412. doi:10.4319/lo.2009.54.2.0401

    Article  Google Scholar 

  19. Schmitt R (1979) Flux measurements on salt fingers at an interface. J Mar Res 37:419–436

    Google Scholar 

  20. Stewart KM, Platford RF (1986) Hypersaline gradients in two Canadian High Arctic lakes. Can J Fish Aquat Sci 43(9):1795–1803. doi:10.1139/f86-223

    Article  Google Scholar 

  21. Washburn EW (1926–1930; 2003) International critical tables of numerical data, physics, chemistry and technology, 1st electronic edn, Knovel. Online version available at: http://app.knovel.com/hotlink/toc/id:kpICTNDPC4/international-critical/international-critical

  22. Welch HE, Bergmann MA (1985) Water circulation in small arctic lakes in winter. Can J Fish Aquat Sci 42:506–520

    Article  Google Scholar 

Download references

Acknowledgements

The Natural Sciences and Engineering Research Council of Canada supported this research through a Postgraduate Research Scholarship to C.E. Bluteau, in addition to a Discovery Grant and Northern Research Supplement to G.A. Lawrence, who is also grateful for the support of a Canada Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia E. Bluteau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bluteau, C.E., Pieters, R. & Lawrence, G.A. The effects of salt exclusion during ice formation on circulation in lakes. Environ Fluid Mech 17, 579–590 (2017). https://doi.org/10.1007/s10652-016-9508-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-016-9508-6

Keywords

Navigation