Skip to main content
Log in

Modeling the interaction between tides and storm surges for the Taiwan coast

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

An unstructured grid, two-dimensional hydrodynamic model was established and applied to the coast of Taiwan to investigate the tide-surge interaction. Tidal elevations at the open boundaries coupled with a global ocean tidal model and the meteorological conditions using a cyclone model are used to drive the model. The model was calibrated and verified with the observed tidal levels at six tidal stations for seven typhoon events to ascertain the capability and feasibility of the model. The results show reasonable agreement between the simulated and observed tidal levels. The validated model was then applied to probe the influence of tide-surge interaction on phase, water levels, and storm surge height. We found that the tide-surge interaction influenced both the magnitude and timing of the surge, which depended on the typhoon path. The storm surge heights at different tidal stations were significantly influenced by wind stresses and directions. The water level rise due to the storm surge during high tide was greater at neap tide than at spring tide. Changing tidal ranges altered the prediction of the surge enough to induce the changes in peak water levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Antony C, Unnikrishnan AS (2013) Observed characteristics of tide-surge interaction along the east coast of India and the head of Bay of Bengal. Estuar Coast Shelf Sci 131:6–11

    Article  Google Scholar 

  2. Atkinson GD, Holliday CR (1977) Tropical cyclone minimum sea level pressure-maximum sustained wind relationship for the western North Pacific. Mon Weather Rev 105(4):421–427

    Article  Google Scholar 

  3. Bacopoulos P, Dally WR, Hagen SC, Cox AT (2012) Observations and simulation of winds, surge, and currents on Florida’s east coast during hurricane Jeanne (2004). Coast Eng 60(2):94

    Google Scholar 

  4. Bacopoulos P, Funakoshi Y, Hagen SC, Cox AT, Cardone VJ (2009) The role of meteorological forcing on the St. Johns River (Northeastern Florida). J Hydrol 369:55–70

    Article  Google Scholar 

  5. Bajo M, Zampato L, Umgiesser G, Cucco A, Canestrelli P (2007) A finite element operational model for storm surge prediction in Venice. Estuar Coast Shelf Sci 75(1–2):236–249

    Article  Google Scholar 

  6. Bernier NB, Thopmson KR (2006) Predicting the frequency of storm surges and extreme sea levels in the northwest Atlantic. J Geophys Res 111:C10009

    Article  Google Scholar 

  7. Bernier NB, Thopmson KR (2007) Tide-surge interaction off the east coast of Canada and northeastern United states. J Geophys Res 112(C6):C06008

    Article  Google Scholar 

  8. Bertin X, Bruneau N, Breilh JF, Fortunato AB, Karpytchev M (2012) Importance of wave age and resonance in storm surges: the case Xynthia, Bay of Biscay. Ocean Model 42:16–30

    Article  Google Scholar 

  9. Bhaskaran PK, Gayathri R, Murty PLN, Bonthu S, Sen D (2014) A numerical study of coastal inundation and its validation for Thane cyclone in the Bay of Bengal. Coast Eng 83:108–118

    Article  Google Scholar 

  10. Bhaskaran PK, Nayak S, Bonthu SR, Murty PL, Sen D (2013) Performance and validation of a coupled parallel ADCIRC-SWAN model for THANE cyclone in the Bay of Bengal. Environ Fluid Mech 13(6):601–623

    Article  Google Scholar 

  11. Brown J, Souza A, Wolf J (2010) An 11-year validation of wave-surge modelling in the Irish Sea, using a nested POLCOMS-WAM modelling system. Ocean Model 33(1–2):118–128

    Article  Google Scholar 

  12. Bunya S, Dietrich JC, Westerink JJ, Ebersole BA, Smith JM, Atkinson JH, Jensen R, Resio DT, Luettuch RA, Dawson C, Cardone VJ, Cox AT, Powell MD, Westerink HJ, Roberts HJ (2010) A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part I: model development and validation. Mon Weather Rev 138(2):345–377

    Article  Google Scholar 

  13. Chen Q, Wang L, Tawes R (2008) Hydrodynamic response of northeastern Gulf of Mexico to hurricanes. Estuar Coast 31(6):1098–1116

    Article  Google Scholar 

  14. Chen WB, Liu WC, Hsu MH (2012) Computational investigation of typhoon-induced storm surges along the Coast of Taiwan. Nat Hazards 64(2):1161–1185

    Article  Google Scholar 

  15. Chen WB, Liu WC, Hsu MH (2012) Predicting typhoon-induced storm tide with a two-dimensional hydrodynamic model and artificial neural network model. Nat Hazard Earth Sys 12(12):3799–3809

    Article  Google Scholar 

  16. Cheng RT, Burau JR, Gartner JW (1991) Interfacing data analysis and numerical modelling for tidal hydrodynamic phenomena. In: Parker BB (ed) Tidal hydrodynamics. Wiley, New York, pp 201–210

    Google Scholar 

  17. Cobb M, Blain CA (2002) Simulating wave-tide induced circulation in Bay St. Louis MS with a coupled hydrodynamic-wave model. Mar Technol Soc 3:1494–1500

    Google Scholar 

  18. Dietsche D, Hagen SC, Bacopoulos P (2007) Storm surge simulation for Hurricane Hugo (1989): on the significance of inundation areas. J Waterw Port Coast Ocean Eng 133(3):183–191

    Article  Google Scholar 

  19. Dietrich JD, Zijlema M, Westerink JJ, Holthuijsen LH, Dawson C, Luettich RA, Jensen RE, Smith JM, Stelling GS, Stone GW (2011) Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coast Eng 58(1):45–65

    Article  Google Scholar 

  20. Drews C, Galarneau TJ (2015) Directional analysis of the storm surge from Hurricane Sandy 2012, with applications to Charleston, New Orleans, and Philippines. PLoS ONE 10(3):e0122113

    Article  Google Scholar 

  21. Eakins BW, Miller SP, Helly J, Zelt B (2006) The fully electronic IODP site survey data bank. Sci Drill 2:40–42

    Article  Google Scholar 

  22. Egbert GD, Bennett AF, Foreman MG (1994) TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res 99(C12):24821–24852

    Article  Google Scholar 

  23. Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Tech 19(2):183–204

    Article  Google Scholar 

  24. Etala P (2009) Dynamic issues in the SE South America storm surge modeling. Nat Hazards 51(1):79–95

    Article  Google Scholar 

  25. Flather RA (2001) Storm surges. In: Steele J, Thorpe S, Turekian K (eds) Encyclopaedia of ocean sciences. Academic, San Diego, pp 2882–2892

    Chapter  Google Scholar 

  26. Gayathri R, Murty PLN, Bhaskaran PK, Srinivasa Kumar T (2015) A numerical study of hypothetical storm surge and coastal inundation for AILA cyclone in the Bay of Bengal. Environ Fluid Mech. doi:10.1007/s10652-015-9434-z

    Google Scholar 

  27. Guo Y, Zhang J, Zhang L, Shen Y (2009) Computational investigation of typhoon-induced storm surge in HangZhou Bay. China. Estuar Coast Shelf Sci 85(4):530–536

    Article  Google Scholar 

  28. Holland GJ (1980) An analytic model of the wind and pressure profiles in hurricanes. Mon Weather Rev 108(8):1212–1218

    Article  Google Scholar 

  29. Hope ME, Westerink JJ, Kennedy AB, Kerr PC, Dietrich JC, Dawson C, Bender CJ, Smith JM, Jensen RE, Zijlema M, Holthuijsen LH, Luettich RA, Powell MD, Cardone VJ, Cox AT, Pourtaheri H, Roberts HJ, Atkinson JH, Tanaka S, Westerink HJ, Westerink LG (2013) Hindcast and validation of Hurricane Ike (2008) waves, forerunner, and storm surge. J Geophs Res 118(10):1–37

    Google Scholar 

  30. Horsburgh KJ, Wilson C (2007) Tide-surge interaction and its role in the distribution of surge residuals in the North Sea. J Geophys Res 112(C8):C08003

    Article  Google Scholar 

  31. Idier D, Dumas F, Muller H (2012) Tide-surge interaction in the English Channel. Nat Hazard Earth Syst Sci 12(12):3709–3718

    Article  Google Scholar 

  32. Jakobsen F, Madsen H (2004) Comparison and further development of parametric tropical cyclone models for storm surge modelling. J Wind Eng Ind Aerod 92(5):375–391

    Article  Google Scholar 

  33. Jelesnianski CP (1965) A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf. Mon Weather Rev 93(6):343–358

    Article  Google Scholar 

  34. Jelesnianski CP, Chen J, Shaffer WA (1992) SLOSH: sea, lake, and overland surges from hurricane. National Weather Service, Silver Springs

    Google Scholar 

  35. Jones JE, Davies AM (2007) Influence of non-linear effects upon surge elevations along the west coast of Britain. Ocean Dyn 57(4–5):401–416

    Article  Google Scholar 

  36. Keen TR, Bentley SJ, Vaughn WC, Blain CA (2004) The generation and preservation of multiple hurricane beds in the Northern Gulf of Mexico. Mar Geol 210(1–4):79–105

    Article  Google Scholar 

  37. Kerr PC, Donahue AS, Westerink JJ, Luettich RA, Zheng LY, Weisberg RH, Huang Y, Wang HV, Teng Y, Forrest DR, Roland A, Haase AT, Kramer AW, Taylor AA, Rhome JR, Feyen JC, Signell RP, Hanson JL, Hope ME, Estes RM, Dominguez RA, Dunbar RP, Semeraro LN, Westerink HJ, Kennedy AB, Smith JM, Powell MD, Cardone VJ, Cox AT (2013) U.S. IOOS coastal and ocean modeling testbed: inter-model evaluation of tides, waves, and hurricane surge in the Gulf of Mexico. J Geophs Res Oceans 118(10):1–44

    Google Scholar 

  38. Kerr PC, Martyr RC, Donahue AS, Hope ME, Westerink JJ, Luettuch RA, Kennedy AB, Dietrich JC, Dawson C, Westerink HJ (2013) U.S. IOOS coastal and ocean modeling testbed: evaluation of tide, wave, and hurricane surge response sensitivities to mesh resolution and friction in the Gulf of Mexico. J Geophs Res Oceans 118(9):4633–4661

    Article  Google Scholar 

  39. Le Provost C, Genco ML, Lyard F, Vincent P, Canceil P (1994) Tidal spectroscopy of the world ocean tides from a finite element hydrodynamic model. J Geophys Res 99(C12):24777–24798

    Article  Google Scholar 

  40. Lowe JA, Gregory JM (2005) The effects of climate change on storm surges around the United Kingdom. Philos Trans R Soc A 363:1831

    Article  Google Scholar 

  41. Luettich RA, Westerink JJ, Scheffner NW (1992) ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries, Report I: theory and methodology of ADCIRC-2DDI and ADCIRC-3DL, US Army Corps of Engineers, Technical Report DRP-92-6

  42. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56:394–415

    Article  Google Scholar 

  43. Lynge BK, Hjelmervik K, Gjevik B (2013) Storm surge and tidal interaction in the Tjeldsund channel, northern Norway. Ocean Dyn 63(7):723–739

    Article  Google Scholar 

  44. Marujo NRC, Araujo MAVC, Trigo-Teixeira A, Falcao AP, Mazzolari A (2014) Storm-surge hindcast at Viana do Castelo: an oceanic and estuarine domain approach. J Coast Res 30(6):1268–1277

    Article  Google Scholar 

  45. Murty PLN, Sandhya KG, Bhaskaran PK, Jose F, Gayathri R, Balakrishnan Nair TH, Kumar TS, Shenoi SSC (2014) A coupled hydrodynamic modeling system for PHAILIN cyclone in the Bay of Bengal. Coast Eng 93:71–81

    Article  Google Scholar 

  46. Ou SH, Liau JM, Hsu TW, Tzang SY (2002) Simulating typhoon waves by SWAN wave model in coastal waters of Taiwan. Ocean Eng 29(8):947–971

    Article  Google Scholar 

  47. Park YH, Suh KD (2012) Variation of storm surge caused by shallow water depths and extreme tidal ranges. Ocean Eng 55(1):44–51

    Article  Google Scholar 

  48. Peng M, Xie L, Pietrafesa LJ (2006) Tropical cyclone induced asymmetry of sea level surge and fall and its representation in a storm surge model withy parametric wind fields. Ocean Model 14(1–2):81–101

    Article  Google Scholar 

  49. Prandle D, Wolf J (1978) The interaction of surge and tide in the North Sea and River Thames. Geophys J Int 55(1):203–216

    Article  Google Scholar 

  50. Proudman J (1955) The propagation of tide and surge in an estuary. Proc Roy Soc A Math Phys Eng Sci 231(1184):8–24

    Article  Google Scholar 

  51. Proudman J (1957) Oscillations of tide and surge in an estuary of finite length. J Fluid Mech 2:371–381

    Article  Google Scholar 

  52. Quinn N, Atkinson PM, Wells NC (2012) Modelling of tide and surge elevations in the Solent and surrounding waters: the importance of tide-surge interactions. Estuar Coast Shelf Sci 112:167–172

    Article  Google Scholar 

  53. Rego JL, Li C (2010) Storm surge propagation in Galveston Bay during Hurricane Ike. J Mar Syst 82(4):265–279

    Article  Google Scholar 

  54. Rego JL, Li C (2010) Nonlinear terms in storm surge predictions: effect of tide and shelf geometry with case study from hurricane Rita. J Geophys Res 115(C6):C06020

    Article  Google Scholar 

  55. Rossiter JR (1961) Interaction between tide and surge in the Thames. Geophys J Roy Astron Soc 6(1):29–53

    Article  Google Scholar 

  56. Roy GD (1995) Estimation of expected maximum possible water level along the Meghna Estuary using a tide and surge interaction model. Environ Int 21(5):671–677

    Article  Google Scholar 

  57. Salisbury MB, Hagen SC (2007) The effect of tidal inlets on open coast storm surge hydrographs. Coast Eng 54(5):377–391

    Article  Google Scholar 

  58. Shen J, Wang HV, Sisson M, Gong W (2006) Storm tide simulation in the Chesapeake Bay using and unstructured grid model. Estuar Coast Shelf Sci 68(1–2):1–16

    Article  Google Scholar 

  59. Stammer D, Ray RD, Andersen OB, Arbic BK, Bosch W, Carrere L, Cheng Y, Chinn DS, Dushaw BD, Egbert GD, Erofeeva SY, Fok HS, Green JAM, Griffiths S, King MA, Lapin V, Lemoine FG, Luthcke SB, Lyard F, Morison J, Muller M, Padman L, Richman JG, Shriver JF, Shum CK, Taguchi E, Yi Y (2014) Accuracy assessment of global barotropic ocean models. Rev Geophys 52(3):243–282

    Article  Google Scholar 

  60. Sun WX, Luo YY, Wang JY (1994) Numerical modelling of storm surges in the Beibu Gulf with SCM. Acta Oceanol Sin 13(4):475–483

    Google Scholar 

  61. Weisberg RH, Zheng L (2008) Hurricane storm surge simulations comparing three-dimensional with two-dimensional formulations based on an Ivan-like storm over the Tampa Bay, Florida region. J Geophys Res 113:C12001

    Article  Google Scholar 

  62. Wells N, Baldwin D, Wang J, Collins M (2001) Modelling of extreme storm surge events in the English Channel for the period 14–18 December 1989. Global Atmos Ocean Syst 7(4):275–294

    Google Scholar 

  63. Westerink JJ, Luettich RA, Blain CA, Scheffner NW (1994a) ADCIRC: An advanced three-dimensional circulation model for shelves, coasts and estuaries. Report 2: Users’ Manual for ADCIRC-2DDI. Technical Report, DRP-94, U.S. Army Corps of Engineers

  64. Westerink JJ, Luettich RA, Muccino JC (1994) Modeling tides in the Western North Atlantic using unstructured graded grids. Tellus A 46(2):178–199

    Article  Google Scholar 

  65. Wolf J (1981) Surge-tide interaction in the North Sea and River Thames. In: Peregrine DH (ed) Floods due to high winds and tides. Elsevier, New York, pp 75–94

    Google Scholar 

  66. Wu J, Chen S, Lee CI, Chen CH, Wu J, Kuo J, Hsu H, Jan S (2010) An interdisciplinary oceanic database for the East Asian seas. In: Joint 2010 CWB Weather Analysis and Forecasting and COAA 5th International Ocean-Atmosphere Conference, Taipei, pp 118–122

  67. Xia M, Xia L, Pietrafesa LJ, Peng M (2008) A numerical study of storm surge in the Cape Fear River Estuary and adjacent coast. J Coast Res 24(4C):159–167

    Article  Google Scholar 

  68. Xing J, Jones E, Davies AM, Hall P (2011) Modelling tide-surge interaction effects using finite volume and finite element models of the Irish Sea. Ocean Dynam 61(8):1137–1174

    Article  Google Scholar 

  69. Yin B, Xu Z, Huang Y, Lin X (2009) Simulating a typhoon storm surge in the East Sea of China using a coupled model. Prog Nat Sci 19(1):65–71

    Article  Google Scholar 

  70. You SH, Lee WJ, Moon KS (2010) Comparison of storm surge/tide predictions between a 2-D operational forecast system, the regional tide/storm surge model (RTSM), and the 3-D regional ocean modeling system (ROMS). Ocean Dyn 60(2):443–459

    Article  Google Scholar 

  71. Zhang H, Sheng J (2015) Examination of extreme sea levels due to storm surges and tides over the northwest Pacific Ocean. Cont Shelf Res 93:81–97

    Article  Google Scholar 

  72. Zhang WZ, Hong HS, Shang SP, Chen DW, Chai F (2007) A two-way nested coupled tide-surge model for the Taiwan Strait. Cont Shelf Res 27(10–11):1548–1567

    Article  Google Scholar 

  73. Zhang WZ, Shi F, Hong H, Shang S, Kirby J (2010) Tide-surge intensified by the Taiwan Strait. J Geophys Res 115:C06012

    Google Scholar 

Download references

Acknowledgments

The project was funded by the Minister of Science and Technology, Taiwan, grant Nos. NSC 100-2625-M-239-001 and 101-2625-M-239-001. The authors express their appreciation to the Taiwan Central Weather Bureau for providing the observational data. The authors sincerely thank two anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Cheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WC., Huang, WC. & Chen, WB. Modeling the interaction between tides and storm surges for the Taiwan coast. Environ Fluid Mech 16, 721–745 (2016). https://doi.org/10.1007/s10652-015-9441-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-015-9441-0

Keywords

Navigation