Skip to main content
Log in

Modelling relationships between socioeconomy, landscape and water flows in Mediterranean agroecosystems: a case study in Adra catchment (Spain) using Bayesian networks

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

In Mediterranean areas, the co-evolution between social and natural systems has given rise to heterogeneous and complex systems of interactions called agroecosystems, in which strong relationships between socioeconomy, landscape and water flows have been identified. In this context, water resources management is a prominent area of research, particularly in semi-arid conditions, where a special set of challenges requires novel tools to deal with uncertainty, multiple sources of information and expert knowledge. In this paper, Bayesian Networks are proposed as a means to model the relationships between socioeconomy, landscape and water flows in a Mediterranean agroecosystem, studying its behaviour under two scenarios of change in land use trends: maintenance of traditional Mediterranean agriculture, and agricultural intensification through the development of greenhouses. Results show that an increase in the area of traditional agriculture would lead to better control of runoff and increased primary productivity, measured as green water flows. By contrast, agricultural intensification of the territory would provoke an increase in evaporation and water losses. Due to the versatility of Bayesian networks, results can be expressed not only as probabilities, but also using other metrics that can be computed from them. Accordingly, Sensitivity Analysis to Evidence, Sensitivity Analysis to Parameters and the Kullback–Leibler divergence were carried out. Bayesian Networks have demonstrated their ability to deal with uncertainty inherent to natural systems, combining expert knowledge, data from regional datasets and Geographical Information Systems, and automatic training algorithms giving robust and proper results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Available in http://www.juntadeandalucia.es/medioambiente/site/rediam.

  2. http://www.juntadeandalucia.es/institutodeestadisticaycartografia/sima/index2.htm.

References

  • Aguilera PA, Fernández A, Fernández R, Rumí R, Salmerón A (2011) Bayesian networks in environmental modelling. Environ Model Softw 26:1376–1388

    Article  Google Scholar 

  • Andersen SK, Olesen KG, Jensen FV, Jensen F (1990) HUGIN: a shell for building Bayesian belief universes for expert systems. In: Shafer G, Pearl J (eds) Readings in uncertain reasoning. Kaufmann, San Mateo, pp 332–337

    Google Scholar 

  • Aranzabal ID, Schmitz MF, Aguilera PA, Pineda FD (2008) Modelling of landscape changes derived from the dynamics of socio-ecological systems. A case in a semiarid Mediterraneam landscape. Ecol Indic 8:672–685

    Article  Google Scholar 

  • Baynes J, Herbohn J, Russell I, Smith C (2011) Bringing agroforestry technology to farmers in the philippines: identifying constraints to the success of extension activities using systems modelling. Small Scale For 10:357–376

    Article  Google Scholar 

  • Bonneau M, Peyrard N, Gaba S, Sabbadin R (2016) Sampling for weed spatial distribution mapping need not be adaptive. Environ Ecol Stat 23:233–255

    Article  CAS  Google Scholar 

  • Bromley J, Jackson NA, Clymer OJ, Giacomello AM, Jensen FV (2005) The use of Hugin® to develop Bayesian networks as aid to integrated water resource planning. Environ Model Softw 20:231–242

    Article  Google Scholar 

  • Caillault S, Mialhe F, Vannier C, Delmotte S, Kedowidé C, Amblard F, Etienne M, Bécu N, Gautreau P, Houet T (2013) Influence of incentive networks on landscape changes: a simple agent-based simulation approach. Environ Model Softw 45:64–73

    Article  Google Scholar 

  • Casadei S, Pierleoni A, Bellezza M (2016) Integrated water resources management in lake system: a case study in central italy. Water 8(12):1–18

    Article  Google Scholar 

  • Castelletti A, Soncini-Sessa R (2007a) Bayesian networks and participatory modelling in water resource management. Environ Model Softw 22:1075–1088

    Article  Google Scholar 

  • Castelletti A, Soncini-Sessa R (2007b) Coupling real-time control and socio-economic issues in participatory river basin planning. Environ Model Softw 22:1114–1128

    Article  Google Scholar 

  • Castro-Nogueira H, de la Guerra MM, de Lucio-Fernández J, Alandi C, Sastre-Olmos P, Atauuri-Mezquida J, Montes C, Molina-Vázquez F, Rosarío-García-Mora M (2002) Integración territorial de espacios naturales protegidos y conectividad ecológica en paisajes mediterráneos. ISBN 84-95785-21-8

  • De-Lucio-Fernández J, Atauri-Mezquida J, Sastre-Olmos P, Martínez-Alandi C (2002) Conectividad y redes de espacios naturales protegidos: Del modelo teórico a la visión práctica de la gestión. In: Environmental connectivity: protected areas the mediterranean context. 26–28 September. Málaga, Spain

  • Falk MG, OLeary R, Nayak M, Collins P, Low-Choy S (2015) A bayesian hyurdle model for analysis of an insect resistence monitoring database. Environ Ecol Stat 22:207–226

    Article  Google Scholar 

  • Falkenmark M (1997) Society interaction with the water cycle: a conceptual framework for a more holistic approach. Hydrol Sci 42(4):451–466

    Article  Google Scholar 

  • Falkenmark M, Folke C (2002) The ethics of socio-ecohydrological catchment management: towards hydrosolidarity. Hydrol Earth Syst Sci 6(1):1–9

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan C, Carpenter SR, CHapin FS, Coe MT, Daily GC, Gibss HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder P (2005) Global consequences of land use. Science 309:50–574

    Article  CAS  Google Scholar 

  • Frayer J, Sun Z, Muller D, Munroe D, Xu J (2014) Analyzing the drivers of tree planting in Yunnan, china, with Bayesian networks. Land Use Policy 36:248–258

    Article  Google Scholar 

  • Fung R, Chang KC (1990) Weighting and integrating evidence for stochastic simulation in Bayesian networks. In: Uncertainty in artificial intelligence, pp 209–220

  • García-Álvarez-Coque JM (2002) La agricultura mediterránea en el siglo XXI. Caja Rural Intermediterránea, Cajamar, Almería. Spain, pp 7–312

  • García-Latorre J, Sánchez-Picón A (2001) Dealing with aridity: socio-economic structures and environmental changes in an arid Mediterranean region. Land Use Policy 18:53–64

    Article  Google Scholar 

  • Gitelman A, Herlihy A (2007) Isomorphic chain graphs for modeling spatial dependence in ecological data. Environ Ecol Stat 14:27–40

    Article  Google Scholar 

  • González-Bernáldez F (1981) Ecología y Paisaje

  • Gordon L, Finlayson C, Falkenmark M (2010) Managing water in agriculture for food production and other ecosystem services. Agric Water Manag 97:512–519

    Article  Google Scholar 

  • Grau HR, Aide TM, Zimmerman JK, Thomlinson JR, Helmer E, Zou X (2003) The ecological consequences of socioeconomic and land-use changes in postagriculture puerto rico. Bioscience 53:1159–1168

    Article  Google Scholar 

  • Henriksen HJ, Barlebo HC (2008) Reflections on the use of Bayesian belief networks for adaptive management. J Environ Manag 88:1025–1036

    Article  Google Scholar 

  • Henriksen HJ, Rasmussen P, Brandt G, von Bülow D, Jensen FV (2007) Public participation modelling using Bayesian networks in management of groundwater contamination. Environ Model Softw 22:1101–1113

    Article  Google Scholar 

  • Hui X, Lei C, Zehenyao S (2015) Assessment of agricultural best management practices using models: current issues and future perspectives. Water 73(3):1–21

    Google Scholar 

  • Irvine KM, Gitelman A (2011) Graphical spatial models: a new view on interpreting spatial pattern. Environ Ecol Stat 18:447–469

    Article  Google Scholar 

  • Jensen FV, Nielsen TD (2007) Bayesian networks and decision graphs. Springer, Berlin

    Book  Google Scholar 

  • Joshi L, Wibawa G, Sinclair F (2001) Local ecological knowledge and socio-economic factors influencing farmersÕ management decisions in jungle rubber agroforestry systems in Jambi, Indonesia. DFID Project R7264 Forestry Research Programme

  • Kelly R, Jakeman AJ, Barreteau O, Borsuk M, ElSawah S, Hamilton S, Henriksen HJ, Kuikka S, Maier H, Rizzoli E, Delden H, Voinov A (2013) Selecting among five common approaches for integrated environmental assessment and management. Environ Model Softw 47:159–181

    Article  Google Scholar 

  • Kersebaum KC, Kroes J, Gobin A, Takac J, Hlavinka P, Trnka M, Ventrella D, Giglio L, Ferrise R, Moriondo M, Marta AD, Luo Q, Eitzinger J, Mirschel W, Weigel HJ, Manderscheid R, Hoffmann M, Nejedlik P, Iqbal MA, Hosch J (2016) Assessing uncertainties of water footprints using an ensemble of crop growth models on winter wheat. Water 8(12):1–20

    Article  Google Scholar 

  • Lambin EF, Meyfroidt P (2010) Land use transitions: socio-ecological feedback versus socio-economic change. Land Use Policy 27:108–118

    Article  Google Scholar 

  • Lauritzen SL, Spiegelhalter DJ (1988) Local computations with probabilities on graphical structures and their application to expert systems. J R Stat Soc Ser B 50:157–224

    Google Scholar 

  • Maes WH, Hueuvelmans G, Muys B (2009) Assessment of land use impact on water-related ecosystem services capturing the integrated terrestrial—aquatic system. Environ Sci Technol 43:7324–7330

    Article  CAS  PubMed  Google Scholar 

  • Mantyka-Pringle CS, Martin TG, Moffatt DB, Linke S, Rhodes JR (2014) Understanding and predicting the combined effects of climate change and land-use change on freshwater macroinvertebrates and fish. J Appl Ecol 51:572–581

    Article  Google Scholar 

  • Pal C, Swayne D, Frey B (2001) The automated extraction of environmentally relevant features from digital imagery using Bayesian multi-resolution analysis. Adv Environ Res 5:435–444

    Article  Google Scholar 

  • Pearl J (1988) Probabilistic reasoning in intelligent systems: network of plausible inference. Morgan Kaufmann, San Mateo, California

  • Phan TD, Smart JC, Capon SJ, Hadwen W (2016) Applications of Bayesian belief networks in water resource management: a systemic review. Environ Model Softw 85:98–111

    Article  Google Scholar 

  • Rockstroem J (2000) Water resources management in smallholder farms in eastern and southern Africa: an overview. Phys Chem Earth 25:275–283

    Article  Google Scholar 

  • Rockstroem J, Karlberg L, Wani S, Barron J, Hatibu N, Oweis T, Bruggeman A, Farahani J, Quiang Z (2010) Managing water in rainfed agriculture—the need for a paradigm shift. Agric Water Manag 97:543–550

    Article  Google Scholar 

  • Ropero R, Renooij S, van der Gaag L (2018) Discretizing environmental data for learning bayesian-network classifiers. Ecol Model 368:391–403

    Article  Google Scholar 

  • Rudel TK, Schneider L, Uriarte M, Turner B, DeFries R, Lawrence D, Geoghegan J, Hecht S, Ickowitz A, Lambin EF, Birkenholtz T, Baptista S, Grau R (2009) Agricultural intensification and changes in cultivated areas, 1970-2005. PNAS 106:20,675–20,680

  • Sadoddin A, Letcher RA, Jakeman A, Newham L (2005) A bayesian decision network approach for assessing the ecological impacts of salinity management. Math Comput Simul 69:162–176

    Article  Google Scholar 

  • Sal AG, García AG (2007) A comprehensive assessment of multifunctional agricultural land-use systems in spain using a multi-dimensional evaluative model. Agric Ecosyst Environ 120:82–91

    Article  Google Scholar 

  • Scanlon BR, Reedy R, Stonestrom D, Prudic D, Dennehys K (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biol 11:1577–1593

    Article  Google Scholar 

  • Schmitz M, Pineda F, Castro H, Aranzabal ID, Aguilera P (2005) Cultural landscape and socioeconomic structure. Environmental value and demand for tourism in a Mediterranean territory. Consejería de Medio Ambiente. Junta de Andalucía. Sevilla

  • Spirtes P, Glymour C, Scheines R (1993) Causation, prediction and search, Lecture Notes in Statistics, vol 81. Springer

  • Stafford R, Clitherow TJ, Howlett SJ, Spiers EK, Williams RL, Yaselga B, Valarezo SZ, Vera-Izutieta DF, Cornejo M (2016) An integrated evaluation of potential management processes on marine reserves in continental Ecuador based on a Bayesian belief network model. Ocean Coast Manag 121:60–69

    Article  Google Scholar 

  • Teegavarapu RSV (2010) Modeling climate change uncertainties in water resources management models. Environ Model Softw 25:1261–1265

    Article  Google Scholar 

  • Uusitalo L (2007) Advantages and challenges of Bayesian networks in environmental modelling. Ecol Model 203:312–318

    Article  Google Scholar 

  • Van Deer Gag L, Renooij S (2001) Analysing sensitivity data from probabilistic networks. UAI pp 530–537

  • Varis O, Kuikka S (1997) BENE-EIA: a Bayesian approach to expert judgment elicitation with case studies on climate change impacts on surface waters. Clim Change 37:539–563

    Article  Google Scholar 

  • Willaarts BA (2009) Dinámica del paisaje en la Sierra Norte de Sevilla. Cambios funcionales e implicaciones en el suministro de servicios de los ecosistemas. PhD thesis, Facultad de Ciencias Experimentales. Departamento de Biología Vegetal y Ecología. Universidad de Almería

  • Willaarts BA, Volk M, Aguilera PA (2012) Assessing the ecosystem services supplied by freshwater flows in Mediterranean agroecosystems. Agric Water Manag 105:21–31

    Article  Google Scholar 

  • Zhang K, Peters J, Janzing D, Scholkopf B (eds) (2012) Kernel-based conditional independence test and application in causal discovery. In: UAI’11 proceedings of the twenty-seventh conference on uncertainty in artificial intelligence, pp 804–813

Download references

Acknowledgements

This work has been supported by the Spanish Ministry of Economy and Competitiveness through projects TIN2013-46638-C3-1-P and TIN2016-77902-C3-3-P; by the Junta de Andalucía through project P12-TIC-2541, and from ERDF funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa F. Ropero.

Additional information

Handling Editor: Pierre Dutilleul.

Appendices

Appendix A

Definition and thresholds for intervals/state for the discretization in the variables included in the model.

See Table 3.

Table 3 Variables, definition and thresholds for the intervals/states of the discretization

Appendix B

This appendix shows the tables of Normalized likelihood values for all water flows variables in both scenarios.

See Tables 4, 5, 6, 7, 8, 9, 10, 11.

Table 4 Normalized likelihood values for CBW in the scenario of maintenance of tradicional croplands
Table 5 Normalized likelihood values for RBW in the scenario of maintenance of tradicional croplands
Table 6 Normalized likelihood values for PGW in the scenario of maintenance of tradicional croplands
Table 7 Normalized likelihood values for NPGW in the scenario of maintenance of tradicional croplands
Table 8 Normalized likelihood values for CBW in the scenario of agricultural intensification trough greenhouse
Table 9 Normalized likelihood values for RBW in the scenario of agricultural intensification trough greenhouse
Table 10 Normalized likelihood values for PGW in the scenario of agricultural intensification trough greenhouse
Table 11 Normalized likelihood values for NPGW in the scenario of agricultural intensification trough greenhouse

Appendix C

See Table 12.

Table 12 Correlation matrix

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ropero, R.F., Rumí, R. & Aguilera, P.A. Modelling relationships between socioeconomy, landscape and water flows in Mediterranean agroecosystems: a case study in Adra catchment (Spain) using Bayesian networks. Environ Ecol Stat 26, 47–86 (2019). https://doi.org/10.1007/s10651-019-00419-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-019-00419-2

Keywords

Navigation