Skip to main content
Log in

The use of STATICO and COSTATIS, two exploratory three-ways analysis methods: an application to the ecology of aquatic heteroptera in the Medjerda watershed (Tunisia)

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

This article is intended as a guideline to the use of two exploratory data analysis methods, namely STATICO and COSTATIS. Both techniques have already been used in the field of ecological data analysis, and we present a rapid survey of the ecological literature on three-ways analysis methods. Here, we wish to share some advanced computation and graphical display scripts to help ecologists use these methods. We first recall the main principles of these two methods for the analysis of the relationships between the structures of two series of data tables. In the context of ecology, these two series can be for example (1) a series of species data tables and (2) a series of environmental parameters tables. A detailed, real-size example is presented to show how this strategy can be put in place using the ade4 and adegraphics packages for R. This example relates to the ecology of aquatic Heteroptera in the Medjerda watershed (Tunisia). We show how the outputs of the two methods can be used to interpret the relationships between aquatic Heteroptera species distribution and environmental parameters. Several R scripts to conduct the computations and draw suitable graphical displays are reproduced and explained in the text and in five appendices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdi H, Williams L, Valentin D, Bennani-Dosse M (2012) STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling. WIREs Comput Stat 4:124–167

    Article  Google Scholar 

  • Abidi S, Bejaoui M, Boumaiza M (2011) Influence de la pollution sur la qualité des eaux et la méiofaune de l’oued Kasseb (Tunisie septentrionale). Bulletin de la Société Zoologique de France 136:145–157

    Google Scholar 

  • Abidi S, Bejaoui M, Jemli M, Boumaiza M (2015) Qualité des eaux du cours principal de la Medjerda et trois de ses affluents nord. Hydrol Sci J 60:1607–1619

    Article  CAS  Google Scholar 

  • Amiri A, Chaqui A, Hamdi Nasr I, Inoubli MH, Ben Ayed N, Tlig S (2011) Role of preexisting faults in the geodynamic evolution of Northern Tunisia, insights from gravity data from the Medjerda valley. Tectonophysics 506(1–4):1–10

    Article  Google Scholar 

  • Andersen N (1971) Infraorder Gerromorpha Popov, 1971. Semiaquatic bugs. In: Aukema B, Rieger C (eds) Catalogue of the heteroptera of the palaearctic region. The Netherlands Entomological Society, Amsterdam, pp 77–114

    Google Scholar 

  • Aukema B, Rieger C, Rabitsch W (2013) Supplements. In: Catalogue of the Heteroptera of the Palaearctic region, The Netherlands Entomological Society, Amsterdam, p 629

  • Ben Ayed N (1986) Evolution tectonique de l’avant-pays de la chaîne alpine de Tunisie du début du Mésozoïque à l’actuel. Thèse d’etat, Université De Paris Sud - Centre d’Orsay, Paris

  • Bertrand F, Maumy-Bertrand M (2010) Using Partial Triadic Analysis for Depicting the Temporal Evolution of Spatial Structures: Assessing Phytoplankton Structure and Succession in a Water Reservoir. Case Studies in Business, Industry and Government Statistics 4(1):23–43, http://www.bentley.edu/csbigs/documents/bertrand2.pdf

  • Boumaïza M (1984) Contribution à la limnologie de la Tunisie: étude physico-chimique. Arch Inst Pasteur Tunis 61:205–246

    PubMed  Google Scholar 

  • Carapezza A (1997) Heteroptera of Tunisia. Naturalista Siciliano 4:1–312

    Google Scholar 

  • Carassou L, Ponton D (2006) Spatio-temporal structure of pelagic larval and juvenile fish assemblages in coastal areas of New Caledonia, Southwest Pacific. Mar Biol 150:697–711

    Article  Google Scholar 

  • Carbonell JA, Gutiérrez-Cánovas C, Bruno D, Abellán P, Velasco J, Millán A (2011) Ecological factors determining the distribution and assemblages of the aquatic Hemiptera (Gerromorpha and Nepomorpha) in the Segura river basin (Spain). Limnetica 30:59–70

    Google Scholar 

  • Certain G, Masse J, Van Canneyt O, Petitgas P, Doremus G, Santos M, Ridoux V (2011) Investigating the coupling between small pelagic fish and marine top predators using data collected from ecosystem-based surveys. Mar Ecol Prog Ser 422:23–39

    Article  Google Scholar 

  • Chessel D, Hanafi M (1996) Analyses de la co-inertie de K nuages de points. Revue de Statistique Appliquée 44:35–60

    Google Scholar 

  • Cummins KW, Merritt RW (1996) Ecology and distribution of aquatic insects. In: Merritt RW, Cummins KW (eds) An introduction to the aquatic insects of North America, 2nd edn. Kendall/Hunt Publ. Co., Dubuque, pp 74–86

    Google Scholar 

  • David V, Ryckaert M, Karpytchev M, Bacher C, Arnaudeau V, Vidal N, Maurer D, Niquil N (2012) Spatial and long-term changes in the functional and structural phytoplankton communities along the French Atlantic coast. Estuar Coast Shelf Sci 108:37–51

    Article  Google Scholar 

  • Decaëns T, Rossi JP (2001) Spatio-temporal structure of earthworm community and soil heterogeneity in a tropical pasture. Ecography 24:671–682

    Article  Google Scholar 

  • Decaëns T, Jiménez JJ, Rossi JP (2009) A null-model analysis of the spatio-temporal distribution of earthworm species assemblages in Colombian grasslands. J Trop Ecol 25:415–427

    Article  Google Scholar 

  • Dolédec S, Chessel D (1994) Co-inertia analysis: an alternative method for studying species-environment relationships. Freshw Biol 31:277–194

    Article  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4):1–20

    Article  Google Scholar 

  • Dray S, Siberchicot A (2015) adegraphics: An S4 Lattice-based package for the representation of multivariate data. https://github.com/sdray/adegraphics, r package version 1.0-4

  • Dray S, Chessel D, Thioulouse J (2003) Co-inertia analysis and the linking of ecological data tables. Ecology 84:3078–3089

    Article  Google Scholar 

  • Dungan JL, Perry JN, Dale MRT, Legendre P, Citron-Pousty S, Fortin MJ, Jakomulska A, Miriti M, Rosenberg MS (2002) A balanced view of scale in spatial statistical analysis. Ecography 25(5):626–640

    Article  Google Scholar 

  • Erős T, Sály P, Takács P, Specziár A, Bíró P (2012) Temporal variability in the spatial and environmental determinants of functional metacommunity organization - stream fish in a human-modified landscape. Freshw Biol 57(9):1914–1928

    Article  Google Scholar 

  • Ernoult A, Freiré-Diaz S, Langlois E, Alard D (2006) Are similar landscapes the result of similar histories? Landscape Ecol 21(5):631–639

    Article  Google Scholar 

  • Escoufier Y (1973) Le traitement des variables vectorielles. Biometrics 29:750–760

    Article  Google Scholar 

  • Faust D, Zielhofer C, Baena R, del Olmo FD (2004) High-resolution fluvial record of late Holocene geomorphic change in northern Tunisia: climatic or human impact ? Quatern Sci Rev 23(16–17):1757–1775

    Article  Google Scholar 

  • Garcia-Aviles J, Puig MA, Soler AG (1996) Distribution and association of the aquatic Heteroptera of the Balearic Islands (Spain). Hydrobiologia 324:209–217

    Article  Google Scholar 

  • Ghanmi M (1980) Etude géologique du Djebel Kebbouch (Tunisie septentrionale). PhD thesis, Université Paul Sabatier, Toulouse

  • Gonçalves A, Pardal M, Marques S, Mendes S, Fernández-Gómez M, Galindo-Villardón M, Azeiteiro U (2012) Diel vertical behavior of Copepoda community (naupliar, copepodites and adults) at the boundary of a temperate estuary and coastal waters. Estuar Coast Shelf Sci 98:16–30

    Article  Google Scholar 

  • Gourdol L, Hissler C, Hoffmann L, Pfister L (2013) On the potential for the Partial Triadic Analysis to grasp the spatio-temporal variability of groundwater hydrochemistry. Appl Geochem 39:93–107

    Article  CAS  Google Scholar 

  • Hernández-Fariñas T, Soudant D, Barillé L, Belin C, Lefebvre A, Bacher C (2014) Temporal changes in the phytoplankton community along the French coast of the Eastern English Channel and the Southern Bight of the North Sea. ICES J Mar Sci 71:821–833

    Article  Google Scholar 

  • Hufnagel L, Bakonyi G, Vásárhelyi T (1999) New approach for habitat characterization based on species lists of aquatic and semiaquatic bugs. Environmental monitoring and assessment. Environ Monit Assess 58(3):305–316

    Article  Google Scholar 

  • Jansson A (1986) The Corixidae (Heteroptera) of Europa and some adjacent regions. Acta Entomologica Fennica 47:7–94

    Google Scholar 

  • Jansson A (1995) Family Corixidae Leach, 1815 - water boatmen. In: Aukema B, Rieger C (eds) Catalogue of the Heteroptera of the Palaearctic region. Vol. 1. Enicocephalomorpha, Dipsocoromorpha, Nepomorpha, Gerromorpha and Leptopodomorpha. The Netherlands Entomological Society, Amsterdam, pp 26–56

    Google Scholar 

  • Jaouadi M, Amdouni N, Duclaux L (2012) Characteristics of natural organic matter extracted from the waters of Medjerda dam (Tunisia). Desalination 305:64–71

    Article  CAS  Google Scholar 

  • Jiménez JJ, Decaëns T, Rossi JP (2006) Stability of the spatio-temporal distribution and niche overlap in neotropical earthworm assemblages. Acta Oecologica 30(3):299–311

    Article  Google Scholar 

  • Jiménez JJ, Darwiche-Criado N, Sorando R, Comín FA, Sánchez-Pérez JM (2015) A methodological approach for spatiotemporally analyzing water-polluting effluents in agricultural landscapes using Partial Triadic Analysis. J Environ Qual 44:1617–1630

    Article  PubMed  Google Scholar 

  • Karaouzas I, Gritzalis KC (2006) Local and regional factors determining aquatic and semi-aquatic bug (Heteroptera) assemblages in rivers and streams of Greece. Hydrobiologia 573(1):199–212

    Article  Google Scholar 

  • Kidé SO, Manté C, Dubroca L, Demarcq H, Mérigot B (2015) Spatio-temporal dynamics of exploited groundfish species assemblages faced to environmental and fishing forcings: insights from the Mauritanian exclusive economic zone. PLoS ONE 10(e0141):566

    Google Scholar 

  • Kroonenberg P (1989) The analysis of multiple tables in factorial ecology. III. Three mode principal component analysis: analyse triadique complète. Acta Oecol 10:245–256

    Google Scholar 

  • Ladhar C, Tastard E, Casse N, Denis F, Ayadi H (2015) Strong and stable environmental structuring of the zooplankton communities in interconnected salt ponds. Hydrobiologia 743:1–13

    Article  CAS  Google Scholar 

  • Lavit C, Escoufier Y, Sabatier R, Traissac P (1994) The ACT (STATIS method). Comput Stat Data Anal 18:97–119

    Article  Google Scholar 

  • Lebart L, Morineau A, Warwick KM (1984) Multivariate descriptive statistical analysis. Correspondence analysis and related techniques for large matrices. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley, New York

    Google Scholar 

  • Macan TT (1938) Evolution of aquatic habitats with special reference to the distribution of Corixidae. J Anim Ecol 7(1):1

    Article  Google Scholar 

  • Macan TT (1954) A contribution to the study of the ecology of Corixidae (Hemipt.). J Anim Ecol 23(1):115

    Article  Google Scholar 

  • Marques SC, Pardal MA, Mendes S, Azeiteiro UM (2011) Using multitable techniques for assessing the temporal variability of species-environment relationship in a copepod community from a temperate estuarine ecosystem. J Exp Mar Biol Ecol 405:59–67

    Article  Google Scholar 

  • Mendes S, Fernández-Gómez MJ, Resende P, Pereira MJ, Galindo-Villardón MP, Azeiteiro UM (2009) Spatio-temporal structure of diatom assemblages in a temperate estuary. a STATICO analysis. Estuar Coast Shelf Sci 84:637–644

    Article  Google Scholar 

  • Mendes S, Fernández-Gómez MJ, Pereira MJ, Azeiteiro UM, Galindo-Villardón MP (2010) The efficiency of the partial triadic analysis method: an ecological application. Biometri Lett 47(2):83–106

    Google Scholar 

  • Napoléon C, Raimbault V, Fiant L, Riou P, Lefebvre S, Lampert L, Claquin P (2012) Spatiotemporal dynamics of physicochemical and photosynthetic parameters in the central English Channel. J Sea Res 69:43–52

    Article  Google Scholar 

  • Numaan M (2011) Quality assessment of Tigris River by using water quality index for irrigation purpose. Eur J Sci Res 57:15–28

    Google Scholar 

  • Perthuisot V (1978) Dynamique et pétrogenèse des extrusions triasiques en Tunisie septentrionale. Thèse d’état, École normale supérieure, Paris

  • Poisson R (1957) Hétéroptères aquatiques. In: Faune de France, Vol. 61, Fédération Française des Sociétés de Sciences Naturelles, Paris, p 263

  • Polhemus J (1995a) Family Naucoridae Leach, 1815 - creeping water bugs, saucer bugs. In: Aukema B, Rieger C (eds) Catalogue of the Heteroptera of the Palaearctic region. Vol. 1. Enicocephalomorpha, Dipsocoromorpha, Nepomorpha, Gerromorpha and Leptopodomorpha. The Netherlands Entomological Society, Amsterdam, pp 57–60

    Google Scholar 

  • Polhemus J (1995b) Family Nepidae Latreille, 1802 - water scorpions, water stick insects. In: Aukema B, Rieger C (eds) Catalogue of the Heteroptera of the Palaearctic region. Vol. 1. Enicocephalomorpha, Dipsocoromorpha, Nepomorpha, Gerromorpha and Leptopodomorpha. The Netherlands Entomological Society, Amsterdam, pp 14–18

    Google Scholar 

  • Polhemus J (1995c) Family Notonectidae Latreille, 1802 - backswimmers. In: Aukema B, Rieger C (eds) Catalogue of the Heteroptera of the Palaearctic region. Vol. 1. Enicocephalomorpha, Dipsocoromorpha, Nepomorpha, Gerromorpha and Leptopodomorpha. The Netherlands Entomological Society, Amsterdam, pp 63–73

    Google Scholar 

  • Polhemus J (1995d) Family Ochteridae Kirkaldy, 1906 - velvet shore bugs. In: Aukema B, Rieger C (eds) Catalogue of the Heteroptera of the Palaearctic region. Vol. 1. Enicocephalomorpha, Dipsocoromorpha, Nepomorpha, Gerromorpha and Leptopodomorpha. The Netherlands Entomological Society, Amsterdam, pp 25–26

    Google Scholar 

  • Polhemus J (1995e) Family Pleidae Fieber, 1851 - pygmy backswimmers. In: Aukema B, Rieger C (eds) Catalogue of the Heteroptera of the Palaearctic region. Vol. 1. Enicocephalomorpha, Dipsocoromorpha, Nepomorpha, Gerromorpha and Leptopodomorpha. The Netherlands Entomological Society, Amsterdam, pp 73–75

    Google Scholar 

  • Rodier J, Colombani J, Claude J, Kallel R (1981) Le bassin de la Medjerda. Monographies Hydrologiques de l’ORSTOM

  • Rolland A, Bertrand F, Maumy M, Jacquet S (2009) Assessing phytoplankton structure and spatio-temporal dynamics in a freshwater ecosystem using a powerful multiway statistical analysis. Water Res 43(13):3155–3168

    Article  CAS  PubMed  Google Scholar 

  • Rossi JP (2003) The spatiotemporal pattern of a tropical earthworm species assemblage and its relationship with soil structure. Pedobiologia 47(5–6):497–503

    Google Scholar 

  • Rouvier H (1977) Géologie de l’extrême nord tunisien. Tectonique et paléogéographie superposées à l’extrême orientale la chaîne nord maghrébine. PhD thesis, Université de Paris VI, Paris

  • Sabatier R, Vivien M (2008) A new linear method for analyzing four-way multiblock tables: STATIS-4. J Chemom 22:399–407

    Article  CAS  Google Scholar 

  • Savage AA (1982) Use of water boatmen (Corixidae) in the classification of lakes. Biol Conserv 23(1):55–70

    Article  Google Scholar 

  • Savage AA (1990) The distribution of Corixidae in lakes and the ecological status of the North West Midland Meres. Field Stud 7:516–530

    Google Scholar 

  • Savage AA (1994) The distribution of Corixidae in relation to the water quality of British lakes: a monitoring model. Freshwater Forum 4:32–61

    Google Scholar 

  • Simier M, Blanc L, Pellegrin F, Nandris D (1999) Approche simultanee de k couples de tableaux : application à l’étude des relations pathologie végétale - environnement. Revue de Statistique Appliquée 47:31–46

    Google Scholar 

  • Slimani N, Moulet P, Chen PP, Nieser N, Pluot-Sigwalt D, Boumaïza M, Guilbert E (2015) Checklist, distribution, and a new record of Nepomorphan water bugs (Hemiptera: Heteroptera) in northern Tunisia. Zootaxa 3981(2):151

    Article  PubMed  Google Scholar 

  • Slimani N, Chen PP, Nieser N, Moulet P, Ribeiro I, Boumaïza M, Guilbert E (2016) Annotated check-list of semi-aquatic bugs of Tunisia, with detailed faunistic survey of North Tunisia (Hemiptera: Heteroptera: Gerromorpha). Entomologica Americana 122:55–71

    Article  Google Scholar 

  • Smilde R, Westerhuis M, Boqué R (2000) Multiway multiblock component and covariates regression models. J Chemom 14:301–331

    Article  CAS  Google Scholar 

  • Tamanini R (1979) Guide per il riconoscimento delle specie animali delle acque interne italiane, vol. 6. In: Eterotteri Acquatici (Heteroptera: Gerromorpha, Nepomorpha), Consiglio Nazionale delle Ricerche, Verona, p 106

  • ter Braak C (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  • Thioulouse J (2011) Simultaneous analysis of a sequence of paired ecological tables: a comparison of several methods. Ann Appl Stat 5:2300–2325

    Article  Google Scholar 

  • Thioulouse J, Chessel D (1987) Les analyses multitableaux en écologie factorielle. I: De la typologie d’état à la typologie de fonctionnement par l’analyse triadique. Acta Oecol 8:463–480

    Google Scholar 

  • Thioulouse J, Dray S (2007) Interactive multivariate data analysis in R with the ade4 and ade4TkGUI packages. J Stat Softw 22(5):1–14, http://www.jstatsoft.org/v22/i05

  • Thioulouse J, Simier M, Chessel D (2004) Simultaneous analysis of a sequence of paired ecological tables. Ecology 85:272–283

    Article  Google Scholar 

  • Tully O, McCarthy TK, O’Donnell D (1991) The ecology of the Corixidae (Hemiptera: Heteroptera) in the Corrib catchment, Ireland. Hydrobiologia 210(3):161–169

    Article  Google Scholar 

  • Van Den Wollenberg A (1977) Redundancy analysis, an alternative for canonical analysis. Psychometrika 42:207–219

    Article  Google Scholar 

  • Vivien M, Sabatier R (2003) Generalized orthogonal multiple co-inertia analysis(-PLS): new multiblock component and regression methods. J Chemom 17:287–301

    Article  CAS  Google Scholar 

  • Vivien M, Sabatier R (2004) A generalization of STATIS-ACT strategy: DO-ACT for two multiblocks tables. Comput Stat Data Anal 46:155–171

    Article  Google Scholar 

  • Vivien M, Sune F (2009) Two four-way multiblock methods used for comparing two consumer panels of children. Food Qual Prefer 20:472–481

    Article  Google Scholar 

  • Zahar Y, Ghorbel A, Albergel J (2008) Impacts of large dams on downstream flow conditions of rivers: aggradation and reduction of the Medjerda channel capacity downstream of the Sidi Salem dam (Tunisia). J Hydrol 351:318–330

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the cooperation program CNRS/DGRST \(\hbox {n}^{\circ }\) 15/R0902 between France and Tunisia. This study was also funded by the Ministry of High Education and Scientific Research of Tunisia. The sampling survey of 2013 was supported by the Laboratory of Hydrobiology of the Faculty of Sciences in Bizerta. We thanks Mr. Abdessalem Ben Hhaj Amara the dean of the Faculty of Sciences in Bizerta, Khalfallah Taoufik, the general secretary, Gharsallah Hafida, director of the financial service, Hamrouni Nizar, Rzeigui Mourad and the members of this service. We also thank Béjaoui Mustapha, Boughdiri Mabrouk for fruitful collaboration. We thank the associate editor and the two reviewers for many useful comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Thioulouse.

Additional information

Handling Editor: Pierre Dutilleul.

Electronic supplementary material

Appendices

Appendices

1.1 General plot of the STATICO method (Fig. 3)

This figure can be drawn with the generic plot function, but the version given here is enhanced to add colors and avoid label superimpositions. Note that this figure should be drawn in a square window to keep an appropriate height/width ratio.

figure f

Graph g11 is the correlation circle of the Interstructure (top left). The eigenvalues bar chart g12 of the Interstructure analysis is drawn with the plotEig function and inserted in the correlation circle graph with the insert function to obtain graph g1.

Graph g2 is the factor map of Compromise columns (bottom-left). It is drawn with the s.label function and label color is set to blue. The plabels.optim parameter is set to TRUE, which means that labels are arranged to minimize superimpositions.

Graph g31 is the factor map of Compromise rows (top-right). It is also drawn with the s.label function and label color is set to red. The eigenvalues bar chart g32 of the Compromise analysis is drawn with the plotEig function and inserted in graph 31 with the insert function to obtain graph g3.

Graph g4 is the plot of the “typological value” (squared cosines vs. weights) of the tables. It is drawn with the s.label function.

The four graphs are finally grouped using the ADEgS function to get the final Fig. gtot.

1.2 STATICO Intrastructure for environmental parameters and water bugs (Fig. 4)

This figure uses the facets argument to draw automatically the graphs corresponding to the environmental parameters and species at each date (12 months). The height/width ratio of the window in which this figure is drawn should be set to 1.5 to keep appropriate scales.

figure g

Four graph collections are drawn with the s.label and s.arrow function, using the facets argument: slE (labels) and saE (arrows) for environmental parameters (red labels), and slH (labels) and saH (arrows) for water bugs (blue labels).

Each collection is made of the 12 graphs corresponding to the 12 months with the facets argument and the TL or TC elements of the stat1 object. These elements contain factors defining to which month belongs each environmental parameter or each water bug species.

The collections of labels and arrows graphs are superimposed with the superpose function. They are then split in two (months January to June, and months July to December), and the positions of the elementary graphs corresponding to the 6 months are rearranged to place side by side the environmental parameters graph and the water bugs graph of each pair.

This rearrangement of elementary graph positions is done with the layout2position function. It allows an easier comparison of species and environmental parameters graphs month by month.

Both collections of graphs are grouped again using the ADEgS function and plotted side by side.

1.3 STATICO Intrastructure for the sampling sites (Fig. 5)

This figure also uses the facets argument to draw automatically the graphs corresponding to the sampling sites of the environmental parameters table and of the species data table at each date (12 months). The height/width ratio of the window in which this figure is drawn should be set to 1.5 to keep appropriate scales.

figure h

Intrastructure plot of the STATICO method for the sampling sites of the environmental parameters (top, red labels) and water bugs (bottom, blue labels).

In this figure, the facets argument of the s.traject and s.label functions is used to draw automatically collections of graphs. In these collections, each elementary graph corresponds to one table (i.e., one month). The selection of the rows that go into each graph is done with the stat1$supTI factor that is built during analysis computations.

The first collection of graphs (st1) is trajectory lines that links the 12 sites of the environmental parameters tables in the upstream-downstream order. The second collection (sla1) draws the site labels (1–12, in red). Both collections are superimposed with the superpose function, resulting in graph s1.

The same procedure is used for the 12 sites of the water bugs tables (with blue labels), resulting in graph s2. Graphs s1 and s2 are placed one under the other and plotted with function ADEgS.

1.4 General plot of the COSTATIS method (Fig. 6)

This figure can be drawn with the generic plot function, but the version given here is enhanced to add colors and avoid label superimpositions. This figure should be drawn in a square window to keep an appropriate height/width ratio.

figure i

There are six elementary graphs that correspond to several elements of the COSTATIS analysis numerical outputs.

The two correlation circles on the left of the figure show the projection of unconstrained axes in the Co-inertia factor map. They correspond here to the axes of the two separate PTA. They are drawn with the s.corcircle function and stored in objects g1 and g2. The eigenvalues bar chart is drawn with the plotEig function, giving object g3.

The main graph is graph g4. It is a special graph, drawn with the s.match function. This function takes two sets of coordinates for the same series of points and draws an arrow between each pair of coordinates. Here, the two series of coordinates are cost1$mX, the coordinates of the sites in the environmental parameters tables and cost1$mY, the coordinates of sites in the species tables. The twelve arrows are numbered 1–12 and correspond to the 12 sites (green labels).

The two graphs in the lower part of the figure are the graphs of water bugs and of environmental parameters. Each one is drawn with the s.arrow and s.label function resulting in objects g51 and g52 (water bug species, blue labels) and g61 and g62 (environmental parameters, red labels). The two graphs of each pair are superimposed with the + operator.

The final figure gtot is obtained by joining the six elementary graphs with the ADEgS function and a fixed layout that allocates more space to the main graph g4.

1.5 COSTATIS Intrastructure plot (Fig. 7)

This is a synthetic figure, showing the superimposition of the rows (sampling sites: 1–12) and columns (environmental parameters: red labels and water bugs: blue labels) of both series of tables. The height/width ratio of the window in which this figure is drawn should be set to 0.5 to keep appropriate scales.

figure j

This figure is composed of two graphs: the environmental parameters graph (left) and the water bugs graph (right). The limits of the four (scaled) coordinate vectors, cost1$supIX, cost1$c1, cost1$supIY and cost1$l1 are first computed to set the same limits for all the graphs.

The environmental parameters graph is the superimposition of three elementary graphs: sl1 (s.label function, red labels), sa1 (s.arrow function) for parameters, and sc1 (s.class function, green labels grouped by site) for sampling sites. These three graphs are superimposed with the superpose function to get the first part of the Fig. (ss1).

The water bugs graph is also the superimposition of three elementary graphs: sl2 (s.label function, blue labels), sa2 (s.arrow function) for Heteroptera species, and sc2 (s.class function, green labels grouped by site) for sampling sites. These three graphs are superimposed with the superpose function, leading to the second graph ss2.

Graphs ss1 and ss2 are grouped side by side with the ADEgS function to get the complete Fig. st1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slimani, N., Guilbert, E., Ayni, F.E. et al. The use of STATICO and COSTATIS, two exploratory three-ways analysis methods: an application to the ecology of aquatic heteroptera in the Medjerda watershed (Tunisia). Environ Ecol Stat 24, 269–295 (2017). https://doi.org/10.1007/s10651-017-0370-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-017-0370-6

Keywords

Navigation