Skip to main content

Advertisement

Log in

The influence of biotic and abiotic factors on banded common loon (Gavia immer) reproductive success in a remote, mountainous region of the northeastern United States

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Habitat degradation resulting from anthropogenic activities can threaten wildlife populations. Even wildlife existing in seemingly pristine areas are at risk of airborne pollutants and urban development. The common loon (Gavia immer), a top-trophic level predator in freshwater aquatic ecosystems, has previously experienced detrimental changes in reproductive success as a result of anthropogenic activities. However, long-term studies and large sample sizes are necessary to ascertain the impacts of various anthropogenic activities on this long-lived species. Using a multi-year dataset, we investigated the effects of multiple biotic and abiotic factors on the probability of adult male and female common loon hatching and fledging success. From 1998–2017, we banded individual loons, collected blood samples to assess mercury (Hg) exposure of the birds, and monitored their reproductive success. Adult female loon hatching success was negatively associated with the amount of rainfall received in a given year while fledging success was positively associated with the amount of shoreline development. Adult male loon hatching success was positively associated with the amount of shoreline development and fledging success was negatively associated with the number of other loon pairs on a lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnold (2010) Uninformative parameters and model selection using Akaike’s information criterion. J Wildl Manag 74:1175–1178

    Article  Google Scholar 

  • Badzinski SS, Timmermans STA (2006) Factors influencing productivity of common loons (Gavia immer) breeding on circumneutral lakes in Nova Scotia, Canada. Hydrobiologia 567:215–226

    Article  CAS  Google Scholar 

  • Burgess NM, Evers DC, Kaplan JD (2005) Mercury and other contaminants in common loons breeding in Atlantic Canada. Ecotoxicology 14:241–252

    Article  CAS  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  • Caron JA, Robinson SL (1994) Response of breeding common loons to human activity in upper Michigan. Hydrobiologia 280:431–438

    Article  Google Scholar 

  • Castro MS, Sherwell J (2015) Effectiveness of emission controls to reduce the atmospheric concentrations of mercury. Env Sci Tec 49:14000–14007

    Article  CAS  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 81:163–182. https://doi.org/10.1017/S1464793105006950

    Article  Google Scholar 

  • Eagles-Smith CA, Wiener JG, Eckley CS, Willacker JJ, Evers DC, Marvin-DiPasquale M, Obrist D, Fleck JA, Aiken GR, Lepak JM, Jackson AK, Webster JP, Stewart AR, Davis JA, Alpers CN, Ackerman JT (2016) Mercury in western North America: a synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife. Sci Total Environ 568:1213–1226. https://doi.org/10.1016/j.scitotenv.2016.05.094

    Article  CAS  Google Scholar 

  • Evers D (2018) The effects of methylmercury on wildlife: a comprehensive review and approach for interpretation. In: DellaSalla A, Goldstein MI (eds) The Encyclopedia of the Anthropocene, vol 5. Elsevier, Oxford, pp 181–194

  • Evers DC, Han Y-J, Driscoll CT, Kamman NC, Goodale MW, Lambert KF, Holsen TM, Chen CY, Clair TA, Butler T (2007) Biological mercury hotspots in the northeastern United States and southeastern Canada. Bioscience 57:29–43. https://doi.org/10.1641/B570107

    Article  Google Scholar 

  • Evers DC, Kaplan JD, Meyer MW, Reaman PS, Braselton WE, Major A, Burgess N, Scheuhammer AM (1998) Geographic trend in mercury measured in common loon feathers and blood. Environ Toxicol Chem 17:173–183. https://doi.org/10.1897/1551-5028

    Article  CAS  Google Scholar 

  • Evers DC, Savoy LJ, Desorbo CR, Yates DE, Hanson W, Taylor KM, Siegel LS, Cooley Jr JH, Bank MS, Major A, Munney K, Mower BF, Vogel HS, Schoch N, Pokras M, Goodale MW, Fair J (2008) Adverse effects from environmental mercury loads on breeding common loons. Ecotoxicology 17:69–81. https://doi.org/10.1007/s10646-007-0168-7

    Article  CAS  Google Scholar 

  • Fevold BM, Meyer MW, Rasmussen PW, Temple SA (2003) Bioaccumulation patterns and temporal trends of mercury exposure in Wisconsin common loons. Ecotoxicology 12:83–93

    Article  CAS  Google Scholar 

  • Field M, Gehring TM (2015) Physical, human disturbance, and regional social factors influencing common loon occupancy and reproductive success. Condor 117:589–597. https://doi.org/10.1650/CONDOR-14-195.1

    Article  Google Scholar 

  • Gerson JR, Driscoll CT (2016) Is mercury in a remote forested watershed of the Adirondack Mountains responding to recent decreases in emissions? Env Sci Tech 50:10943–10950

    Article  CAS  Google Scholar 

  • Glennon MJ, Kretser HE (2013) Size of the ecological effect zone associated with exurban development in the Adirondack Park, NY. Landsc Urban Plan 112:10–17. https://doi.org/10.1016/j.landurbplan.2012.12.008

    Article  Google Scholar 

  • Guilbert J, Betts AK, Rizzo DM, Beckage B, Bomblies A (2015) Characterization of increased persistence and intensity of precipitation in the northeastern United States. Geophys Res Lett 42:1888–1893

    Article  Google Scholar 

  • Hake M, Dahlgren T, Åhlund M, Lindberg P, Eriksson MOG (2005) The impact of water level fluctuation on the breeding success of the Black-throated Diver Gavia arctica in South-west Sweden. Ornis Fenn 82:1–12

    Google Scholar 

  • Hammond CAM, Mitchell MS, Bissell GN (2012) Territory occupancy by common loons in response to disturbance, habitat, and intraspecific relationships. J Wildl Manag 76:645–651. https://doi.org/10.1002/jwmg.298

    Article  Google Scholar 

  • Heimberger M, Euler D, Barr J (1983) The impact of cottage development on common loon reproductive success in central Ontario. Wilson Bull 95:431–439

    Google Scholar 

  • Jukkala G, Piper W (2015) Common loon parents defend chicks according to both value and vulnerability. J Avian Biol 46:551–558. https://doi.org/10.1111/jav.00648

    Article  Google Scholar 

  • Larkin AM, Beier CM (2014) Wilderness perceptions versus management reality in the Adirondack Park, USA. Landsc Urban Plan 130:1–13. https://doi.org/10.1016/j.landurbplan.2014.06.003

    Article  Google Scholar 

  • Mao H, Ye Z, Driscoll C (2017) Meteorological effects on Hg wet deposition in a forested site in the Adirondack region of New York during 2000–2015. Atmos Environ 168:90–100

    Article  CAS  Google Scholar 

  • McCarthy KP, DeStefano S (2011) Effects of spatial disturbance on common loon nest site selection and territory success. J Wildl Manag 75:289–296. https://doi.org/10.1002/jwmg.50

    Article  Google Scholar 

  • McCarthy KP, DeStefano S, Laskowski T (2010) Bald eagle predation on common loon egg. J Raptor Res 44:249–251

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration: National Centers for Environmental Information. https://ncdc.noaa.gov. Accessed 9 Sep 2018

  • Paruk J (1999) Territorial takeover in common loons (Gavia immer). The Wilson Bulletin 111:116–117

  • Piper WH, Tischler KB, Klich M (2000) Territory acquisition in loons: the importance of take-over. Anim Behav 59:385–394

    Article  CAS  Google Scholar 

  • Piper WH, Walcott C, Mager JN, Spilkner FJ (2008) Fatal battles in common loons: a preliminary analysis. Anim Behav 75:1109–1115

    Article  Google Scholar 

  • Radomski PJ, Carlson K, Woizeschke K (2014) Common loon (Gavia immer) nesting habitat models for north-central Minnesota lakes. Waterbirds 37:102–117. https://doi.org/10.1675/063.037.sp113

    Article  Google Scholar 

  • Saalfield ST, Conway WC (2010) Local and landscape habitat selection of nesting bald eagles in east Texas. Southeast Naturalist 9:731–743

    Article  Google Scholar 

  • Schoch N, Glennon MJ, Evers DC, Duron M, Jackson AK, Driscoll CT, Ozard JW, Sauer AK (2014) The impact of mercury exposure on the common loon (Gavia immer) population in the Adirondack Park, New York, USA. Waterbirds 37(sp1):133–146. https://doi.org/10.1675/063.037.sp112

  • Schoch N, Yang Y, Yanai RD, Buxton VL, Evers DC, Driscoll DC (in press) Spatial patterns and temporal trends in mercury concentrations in common loons (Gavia immer) from 1998 to 2016 in New York’s Adirondack Park: Has this top predator benefited from mercury emission controls? Ecotoxicology

  • Schoof JT, Robeson SM (2016) Projecting changes in regional temperature and precipitation extremes in the United States. Weather Clim Extremes 11:28–40

    Article  Google Scholar 

  • Scheuhammer AM, Atchison CM, Wong AHK, Evers DC (1998) Mercury exposure in breeding common loons (Gavia immer) in central Ontario, Canada. Environ Toxicol Chem 17:191–196

    Article  CAS  Google Scholar 

  • Shanley JB, Kamman NC, Clair TA, Chalmers A (2005) Physical controls on total and methylmercury concentrations in streams and lakes of the northeastern USA. Ecotoxicology 14:125–134. https://doi.org/10.1007/s10646-004-6264-z

    Article  CAS  Google Scholar 

  • Spilman CA, Schoch N, Porter WF, Glennon MJ (2014) The effects of lakeshore development on common loon (Gavia immer) productivity in the Adirondack Park, New York, USA. Waterbirds 37:94–101. https://doi.org/10.1675/063.037.sp112

    Article  Google Scholar 

  • Thomson VE, Huelsman K, Ong D (2018) Coal-fired power plant regulatory rollbacks in the United States: implications for local and regional public health. Energy Policy 123:558–568

    Article  CAS  Google Scholar 

  • Tuttle CM, Heintzelman MD (2013) The value of forever wild: an economic analysis of land use in the adirondacks. Agric Resour Econ Rev 42:119–138. https://doi.org/10.1017/S1068280500007656

    Article  Google Scholar 

  • Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Env Sci Tech 31:241–293

  • Vliestra LS, Paruk JD (1997) Predation attempts on common loons, Gavia immer, and the significance of shoreline nesting. Can F-Nat 111:656–657.

  • Watts BD, Mojica EK, Pazton BJ (2015) Seasonal variation in space use by nonbreeding bald eagles within the upper Chesapeake bay. J Raptor Res 49:250–258

    Article  Google Scholar 

  • Weiss-Penzias PS, Gay DA, Brigham ME, Parsons MT, Gustin MS, ter Schure A (2016) Trends in mercury wet deposition and mercury air concentrations across the U.S. and Canada. Sci Total Environ 568:546–556. https://doi.org/10.1016/j.scitotenv.2016.01.061

    Article  CAS  Google Scholar 

  • Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48:607–615. https://doi.org/10.2307/1313420

    Article  Google Scholar 

  • Windels SK, Beever EA, Paruk JD, Brinkman AR, Fox JE, MacNulty CC, Evers DC, Siegel LS, Osborbe DC (2013) Effects of water-level management on nesting success of common loons. J Wildl Manag 77:1626–1638. https://doi.org/10.1002/jwmg.608

    Article  Google Scholar 

  • Witt EL, Kolka RK, Nater EA, Wickman TR (2009) Influence of the forest canopy on total and methyl mercury deposition in the boreal forest. Water Air Soil Pollut 199:3–11. https://doi.org/10.1007/s11270-008-9854-1

    Article  CAS  Google Scholar 

  • Wolfe MF, Atkeson T, Bowerman W, Burger K, Evers DC, Murrary MW, Zillioux E (2007) Wildlife indicators. In: Harris R, Murray MW, Saltman T, Mason R, Krabbenhoft DP, Reash R (eds) Ecosystem responses to mercury contamination: indicators of change. CRC Press, New York, pp 546–556

  • Zhang Y, Jacob DJ, Horowitz HM, Chen L, Amos HM, Krabbenhoft DP, Slemr F, St. Louis VL, Sunderland EM (2016) Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proc Natl Acad Sci 113:526–531. https://doi.org/10.1073/pnas.1516312113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the many dedicated field technicians who have collected data for this study over the past 20 years. A special thanks to Gary Lee, who has been banding loons with us since 1998. Additionally, we are grateful to the New York State Department of Environmental Conservation, the Wildlife Conservation Society’s Zoological Health Program, and Calvin College for providing in-kind support, staff, and field equipment for loon capture and sampling. We also thank the Adirondack Watershed Institute of Paul Smiths College and the Adirondack Ecological Center of SUNY ESY for aiding in data collection. This work was generously funded by the New York State Energy Research and Development Authority, the Wildlife Conservation Society, The Wild Center, Freed Foundation, the Raquette River Advisory Council, and numerous other private foundations and individual donors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie L. Buxton.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics

All applicable national and institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buxton, V.L., Evers, D.C. & Schoch, N. The influence of biotic and abiotic factors on banded common loon (Gavia immer) reproductive success in a remote, mountainous region of the northeastern United States. Ecotoxicology 29, 1794–1801 (2020). https://doi.org/10.1007/s10646-019-02121-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-019-02121-2

Keywords

Navigation