Skip to main content

Advertisement

Log in

The effect of oil sludge contamination on morphological and physiological characteristics of some tree species

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Although petroleum plays an important part in world economy, its exploitation can bring about a great deal of contamination in soil. To select the tree species being tolerant to soil pollution, a pot experiment has been carried out to assess and compare the growth potential of the seedlings of black locust (Robinia pseudoacacia L.), Chinaberry (Melia azedarach L.), Ailantos (Ailanthus altissima Mill.) and Ash (Fraxinus rotundifolia Mill.) in petroleum-hydrocarbon contaminated soils. The seeds of the mentioned species were subjected to different oil sludge concentrations (0, 10, 20 and 40%) for a growth season of 240 days and then seedling emergence, growth performance, biomass production, photosynthetic parameters and heavy metal absorption were measured to find the species with higher resistantce. For all the species, seedling emergence was significantly reduced under the soil pollution among which F. rotundifolia exhibited a better performance. Besides, growth and biomass of F. rotundifolia and R. pseudoacacia were seldom influenced by oil sludge. In addition, seedlings of A. altissima accumulated higher percentage of the heavy metals (particularly Ni, Cu, Cd) in their leaves by virtue of their wider leaf surface area. This study provides valuable insights into phytoremediation of sites contaminated by oil sludge, using tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abioye OP, Ijah UJJ, Aransiola SA (2017) Phytoremediation of soil contaminants by the biodiesel plant Jatropha curcas. In Phytoremediation Potential of Bioenergy Plants. Springer, Singapore, pp 97–137

    Book  Google Scholar 

  • Adam G, Duncan H (2002) Influence of diesel fuel on seed germination. Environ Pollut 120(2):363–370

    Article  CAS  Google Scholar 

  • Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2012) The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytoremediat 14(1):35–47

    Article  Google Scholar 

  • Agamuthu P, Abioye O, Aziz AA (2010) Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas. J Hazard Mater 179(1–3):891–894

    Article  CAS  Google Scholar 

  • Agbogidi O (2011) Effects of crude oil contaminated soil on Biomass accumulation in Jatropha curcas L. seedlings. J Ornam Hortic Plants 1(1):43–49

    Google Scholar 

  • Agbogidi O, Ayelo E (2010) Germination of African oil bean (Pentaclethra macrophylla, Benth.) Seeds grown in crude oil polluted soil, pp 105–111

  • Agbogidi O, Eruotor P, Akparobi S, Nnaji G (2007) Evaluation of crude oil contaminated soil on the mineral nutrient elements of maize (Zea mays L.). J Agron 6(1):188

    Article  CAS  Google Scholar 

  • Agnello AC, Bagard M, Van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563:693–703

    Article  CAS  Google Scholar 

  • Akoto O, Ephraim J, Darko G (2008) Heavy metals pollution in surface soils in the vicinity of abundant railway servicing workshop in Kumasi, Ghana. Int J Environ Res 2(4)

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresour Technol 79(3):273–276

    Article  CAS  Google Scholar 

  • Alves WS, Manoel EA, Santos NS, Nunes RO, Domiciano GC, Soares MR (2018) Phytoremediation of polycyclic aromatic hydrocarbons (PAH) by cv. Crioula: a Brazilian alfalfa cultivar. Int J Phytoremediat 20(8):747–755

    Article  CAS  Google Scholar 

  • Aman MS, Jafari M, Reihan MK, Motesharezadeh B (2018) Assessing some shrub species for phytoremediation of soils contaminated with lead and zinc. Environ Earth Sci 77(3):82

    Article  CAS  Google Scholar 

  • Ambreen S, Javed M, Hina M, Rasul S, Zafar ZU, Manzoor H et al. (2016) Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants. Environ Sci Pollut Res Int 23(18):18320–18331

    Article  CAS  Google Scholar 

  • Anigboro AA, Tonukari NJ (2008) Effect of crude oil on invertase and amylase activities in cassava leaf extract and germinating cowpea seedlings. Asian J Biol Sci 1(1):56–60

  • Aprill W, Sims RC (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 20(1–2):253–265

  • Asuquo FE, Ibanga IJ, Idungafa N (2002) Effects of Qua Iboe (Nigerian) crude oil on germination and growth of okra (Abelmoschus essculentus L.) and fluted pumpkin (Telfairia occidentalis L.) in the tropics. J Environ Pollut Health 1:31–40

    Google Scholar 

  • AOAC (2002) Official methods of analysis (17th ed.) Washington, DC:Association of Official Analytical Chemists

  • Atkinson D (2000) Root characteristics: why and what to measure. In: Root Methods, Springer, pp 1–32

  • Baker E (1970) The morphology and composition of isolated plant cuticles. New Phytol 69(4):1053–1058

    Article  CAS  Google Scholar 

  • Banks M, Schultz K (2005) Comparison of plants for germination toxicity tests in petroleum-contaminated soils. Water Air Soil Pollut 167(1–4):211–219

    Article  CAS  Google Scholar 

  • Banks MK, Schwab AP, Liu B, Kulakow P, Smith JS, Kim R (2003) The effect of plants on the degradation and toxicity of petroleum contami-nants in soil: afield assessment. In: D Tsao (ed.), Advances in biochemicalengineering/bio/technology, special volume: phytoremediation, Springer-Verlag, New York, NY. in press

  • Barrutia O, Garbisu C, Epelde L, Sampedro M, Goicolea M, Becerril J (2011) Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils. Sci Total Environ 409(19):4087–4093

    CAS  Google Scholar 

  • Baruah P, Deka S, Baruah PP (2016) Phytoremediation of crude oil-contaminated soil employing Crotalaria pallida Aiton Environ Sci Pollut Res Int 23(11):10595–10603

    Article  CAS  Google Scholar 

  • Bento RA, Saggin-Júnior OJ, Pitard RM, Straliotto R, da Silva EMR, de Lucena Tavares SR et al. (2012) Selection of leguminous trees associated with symbiont microorganisms for phytoremediation of petroleum-contaminated soil. Water Air Soil Pollut 223(9):5659–5671

  • Besalatpour A, Hajabbasi MA, Khoshgoftarmanesh AH, Dorostkar V (2011) Landfarming process effects on biochemical properties of petroleum-contaminated soils. Soil Sediment Contam 20(2):234–248

  • Bona C, Rezende IMd, Santos GdO, Souza LAd (2011) Effect of soil contaminated by diesel oil on the germination of seeds and the growth of Schinus terebinthifolius Raddi (Anacardiaceae) seedlings. Braz Arch Biol Technol 54(6):1379–1387

    Article  CAS  Google Scholar 

  • Canadell J, Jackson R, Ehleringer J, Mooney H, Sala O, Schulze E-D (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108(4):583–595

    Article  CAS  Google Scholar 

  • Celik A, Kartal AA, Akdoğan A, Kaska Y (2005) Determining the heavy metal pollution in Denizli (Turkey) by using Robinio pseudo-acacia L. Environ Int 31(1):105–112

    Article  CAS  Google Scholar 

  • Chehregani A, Noori M, Yazdi HL (2009) Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Ecotoxicol Environ Saf 72(5):1349–1353

    Article  CAS  Google Scholar 

  • Chupakhina GN, Maslennikov PV (2004) Plant adaptation to oil stress. Russ J Ecol 35(5):290–295

  • Cook RL, Hesterberg D (2013) Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons. Int J Phytoremediat 15(9):844–860

    Article  CAS  Google Scholar 

  • Cui B, Zhang X, Han G, Li K (2016) Antioxidant defense response and growth reaction of Amorpha fruticosa seedlings in petroleum-contaminated soil. Water Air Soil Pollut 227(4):121

    Article  CAS  Google Scholar 

  • Deka S, Deka H, Sarma N (2009) Phytoremediation of hydrocarbon contaminated soil of oil field situated at Lakowa, Upper Assam, India. In Proceedings of the International Symposium on Environmental Pollution, Ecology and Human Health. ISEPEHH. Tirupati, India, pp 79–84

  • da Cunha KPV, do Nascimento CWA (2009) Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water Air Soil Pollut 197(1–4):323

  • Dorn PB, Salanitro JP (2000) Temporal ecological assessment of oil contaminated soils before and after bioremediation. Chemosphere 40(4):419–426

    Article  CAS  Google Scholar 

  • Ebere J, Wokoma E, Wokocha C (2011) Enhanced remediation of a hydrocarbon polluted soil. Res J Environ Earth Sci 3(2):70–74

    CAS  Google Scholar 

  • EPA U (2000) Guidelines for preparing economic analyses. EPA 240-R-00-003. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Fatima K, Afzal M, Imran A, Khan QM (2015) Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil. Bull Environ Contam Toxicol 94(3):314–320

    Article  CAS  Google Scholar 

  • Fatima K, Imran A, Amin I, Khan QM, Afzal M (2018) Successful phytoremediation of crude-oil contaminated soil at an oil exploration and production company by plants-bacterial synergism. Int J Phytoremediat 20(7):675–681

    Article  CAS  Google Scholar 

  • Fitter DW, Martin DJ, Copley MJ, Scotland RW, Langdale JA (2002) GLK gene pairs regulate chloroplast development in diverse plant species. Plant J 31(6):713–727

    Article  CAS  Google Scholar 

  • Gamage SW, Masakorala K, Brown MT, Gamage SW (2017) Effect of used lubricating oil contaminated soil on seed germination and early growth performance of wild-type legume, crotalaria retusa L. In Proceedings of International Forestry and Environment Symposium (Vol. 22)

  • Gobran GR, Wenzel WW, Lombi E (2000) Trace Elements in the Rhizosphere. CRC Press, Boca Raton London New York

  • Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30(3):369–378

    Article  CAS  Google Scholar 

  • Hu G, Li J, Zeng G (2013) Recent development in the treatment of oily sludge from petroleum industry: a review. J Hazard Mater 261:470–490

    Article  CAS  Google Scholar 

  • Hussain F, Hussain I, Khan AHA, Muhammad YS, Iqbal M, Soja G et al. (2018) Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environ Exp Bot 153:80–88

    Article  CAS  Google Scholar 

  • IR of Iran Meteorological Org (IRIMO) (2017) The meteorology of the khoramabad Township. http://www.irimo.ir/english/. Accessed Apr 2017

  • Issoufi I, Rhykerd RL, Smiciklas KD (2006) Seedling growth of agronomic crops in crude oil contaminated soil. J Agron Crop Sci 192(4):310–317

  • Iwegbue C, Nwajel G, Arimoro F (2007) Characteristic level total petroleum hydrocarbons is soil, sediment and surface water of an oil impacted area in the niger delta. Pak J Sci Ind Res 50(4):247–250

    CAS  Google Scholar 

  • Jordahl JL, Foster L, Schnoor JL, Alvarez PJ (1997) Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environ Toxicol Chem 16(6):1318–1321

  • Kabata-Pendias A (2011) Trace elements in soils and plants. CRC Press, Taylor and Francis Group

  • Kaczyńska G, Borowik A, Wyszkowska JJ (2015) Soil dehydrogenases as an indicator of contamination of the environment with petroleum products. Water Air Soil Pollut 226(11):372

    Article  CAS  Google Scholar 

  • Kambhampati MS (2013) EDTA enhanced phytoremediation of copper contaminated soils using chickpea (Cicer aeritinum L.). Bull Environ Contam Toxicol 91(3):310–313

    Article  CAS  Google Scholar 

  • Khan MAI, Biswas B, Smith E, Naidu R, Megharaj M (2018) Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil-a review. Chemosphere 212:755–767

    Article  CAS  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90(4):1317–1332

    Article  CAS  Google Scholar 

  • Kirk JL, Klironomos JN, Lee H, Trevors JT (2005) The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ Pollut 133(3):455–465

    Article  CAS  Google Scholar 

  • Kummerová M, Krulová J, Zezulka Š, Tříska J (2006) Evaluation of fluoranthene phytotoxicity in pea plants by Hill reaction and chlorophyll fluorescence Chemosphere 65(3):489–496

    Article  CAS  Google Scholar 

  • Li FL, Bao WK, Wu N (2011) Morphological, anatomical and physiological responses of Campylotropis polyantha (Franch.) Schindl. seedlings to progressive water stress. Sci Hortic 127(3):436–443

  • Lin Q, Mendelssohn IA (2008) Determining tolerance limits for restoration and phytoremediation with Spartina patens in crude oil-contaminated sediment in greenhouse. Arch Agron Soil Sci 54(6):681–690

  • Lin X, Li X, Li P, Li F, Zhang L, Zhou Q (2008) Evaluation of plant–microorganism synergy for the remediation of diesel fuel contaminated soil. Bull Environ Contam Toxicol 81(1):19–24

    Article  CAS  Google Scholar 

  • Lotfinasabasl S, Gunale VR, Rajurkar NS (2013) Petroleum hydrocarbons pollution in soil and its bioaccumulation in mangrove species, Avicennia marina from Alibaug mangrove ecosystem, Maharashtra, India. Int J Adv Res Tech 2(2):1–7

  • Ma H, Wang A, Zhang M, Li H, Du S, Bai L et al. (2018) Compared the physiological response of two petroleum tolerant-contrasting plants to petroleum stress. Int J Phytoremediat 20(10):1043–1048

    Article  CAS  Google Scholar 

  • Martí MC, Camejo D, Fernández-García N, Rellán-Álvarez R, Marques S, Sevilla F et al. (2009) Effect of oil refinery sludges on the growth and antioxidant system of alfalfa plants. J Hazard Mater 171(1–3):879–885

    Article  CAS  Google Scholar 

  • Merkl N, Schultze-Kraft R, Infante C (2004) Phytoremediation in the tropics—the effect of crude oil on the growth of tropical plants. Bioremediat J 8(3–4):177–184

    Article  CAS  Google Scholar 

  • Merkl N, Schultze-Kraft R, Infante C (2005) Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut 165(1–4):195–209

    Article  CAS  Google Scholar 

  • Merkl N, Schultze-Kraft R, Infante C (2005) Phytoremediation in the tropics–influence of heavy crude oil on root morphological characteristics of graminoids. Environ Pollut 138(1):86–91

    Article  CAS  Google Scholar 

  • Mertens J, Vervaeke P, De Schrijver A, Luyssaert S (2004) Metal uptake by young trees from dredged brackish sediment: limitations and possibilities for phytoextraction and phytostabilisation. Sci Total Environ 326(1–3):209–215

    Article  CAS  Google Scholar 

  • Mohsenzadeh F, Rad AC, Akbari M (2012) Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils. Iran J Environ Health Sci Eng 9(1):26

    Article  CAS  Google Scholar 

  • Monfared SH, Matinizadeh M, Shirvany A, Amiri GZ, Fard RM, Rostami F (2013) Accumulation of heavy metal in Platanus orientalis, Robinia pseudoacacia and Fraxinus rotundifolia. J For Res 24(2):391–395

    Article  CAS  Google Scholar 

  • Mulawarman A, Roshetko J, Sasongko SM, Iriantono D (2003) Tree seed management, seed sources, seed collection and seed handling. International Centre of Research in Agroforestry, Morrilton, Arkansas

  • Muratova AY, Bondarenkova AD, Panchenko LV, Turkovskaya OV (2010) Use of integrated phytoremediation for cleaning-up of oil-sludge-contaminated soil. Applied Biochemistry Microbiol 46(8):789–794

  • Nayak A, Panda S, Basu A, Dhal N (2018) Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. Int J Phytoremediat 20(7):682–691

    Article  CAS  Google Scholar 

  • Nie M, Wang Y, Yu J, Xiao M, Jiang L, Yang J et al. (2011) Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil. PLoS ONE 6(3):e17961

    Article  CAS  Google Scholar 

  • Njoku KL, Akinola MO, Oboh BO (2009) Phytoremediation of crude oil contaminated soil: the effect of growth of Glycine max on the physico-chemistry and crude oil contents of soil. Nat Sci 7(10):79–87

  • Nwaichi EO, Ayalogu EO (2011) Growth and performance of some edible legumes cultivated in crude oil impacted Nigerian Niger Delta soil. Ann Biol Res 2(2):43–49

  • Nwaichi EO, Frac M, Nwoha PA, Eragbor P (2015) Enhanced phytoremediation of crude oil-polluted soil by four plant species: effect of inorganic and organic bioaugumentation. Int J Phytoremediat 17(12):1253–1261

    Article  CAS  Google Scholar 

  • Oguntimehin I, Eissa F, Sakugawa H (2010) Negative effects of fluoranthene on the ecophysiology of tomato plants (Lycopersicon esculentum Mill): fluoranthene mists negatively affected tomato plants. Chemosphere 78(7):877–884

    Article  CAS  Google Scholar 

  • Olson PE, Castro A, Joern M, DuTeau NM, Pilon-Smits EA, Reardon KF (2007) Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon–contaminated soil. J Environ Qual 36(5):1461–1469

    Article  CAS  Google Scholar 

  • Osuagwu AN, Okigbo AU, Ekpo IA, Chukwurah PN, Agbor RB (2013) Effect of crude oil pollution on growth parameters, chlorophyll content and bulbils yield in air potato (Dioscorea bulbifera L.). Int J Appl 3(4):37–42

    Google Scholar 

  • Oyedeji AA, Adebiyi AO, Omotoyinbo MA, Ogunkunle CO (2012) Effect of crude oil-contaminated soil on germination and growth performance of Abelmoschus esculentus L. Moench-A widely cultivated vegetable crop in Nigeria. Am J Plant Sci 3(10):1451

  • Palese A, Pasquale V, Celano G, Figliuolo G, Masi S, Xiloyannis C (2009) Irrigation of olive groves in Southern Italy with treated municipal wastewater: effects on microbiological quality of soil and fruits. Agric Ecosyst Environ 129(1–3):43–51

    Article  Google Scholar 

  • Peretiemo-Clarke B, Achuba F (2007) Phytochemical effect of petroleum on peanut (Arachis hypogea) seedlings. Plant Pathol J 6(2):179–182

    Article  CAS  Google Scholar 

  • Pezeshki S, Hester M, Lin Q, Nyman J (2000) The effects of oil spill and clean-up on dominant US Gulf coast marsh macrophytes: a review. Environ Pollut 108(2):129–139

    Article  CAS  Google Scholar 

  • Quiñones-Aguilar EE, Ferrera-Cerrato R, Gavi-Reyes F, Fernández-Linares L, Rodríguez-Vázquez R, Alarcón A (2003) Emergence and growth of maize in a crude oil polluted soil. Agrociencia 37(6):585–594

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    Article  CAS  Google Scholar 

  • Ranieri E, Gikas P (2014) Effects of plants for reduction and removal of hexavalent chromium from a contaminated soil. Water Air Soil Pollut 225(6):1981

    Article  CAS  Google Scholar 

  • Ranieri E, Fratino U, Petrella A, Torretta V, Rada EC (2016) Ailanthus Altissima and Phragmites Australis for chromium removal from a contaminated soil. Environ Sci Pollut Res Int 23(16):15983–15989

    Article  CAS  Google Scholar 

  • Rehman K, Fatima F, Waheed I, Akash MSH (2018) Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 119(1):157–184

    Article  CAS  Google Scholar 

  • Reilley K, Banks M, Schwab A (1996) Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J Environ Qual 25(2):212–219

    Article  CAS  Google Scholar 

  • Rezek J, in der Wiesche C, Mackova M, Zadrazil F, Macek T (2009) Biodegradation of PAHs in long-term contaminated soil cultivated with european white birch (Betula pendula) and red mulberry (Morus rubra) tree. Int J Phytoremediation 11(1):65–80

  • Robertson SJ, McGill WB, Massicotte HB, Rutherford PM (2007) Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective. Biol Rev 82(2):213–240

    Article  Google Scholar 

  • Schwitzguébel J-P, Aubert S, Grosse W, Laturnus F (2002) Sulphonated aromatic pollutants. Environ Sci Pollut Res 9(1):62–72

    Article  Google Scholar 

  • Serbula SM, Miljkovic DD, Kovacevic RM, Ilic AA (2012) Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotoxicol Environ Saf 76:209–214

    Article  CAS  Google Scholar 

  • Sharifi M, Sadeghi Y, Akbarpour M (2007) Germination and growth of six plant species on contaminated soil with spent oil. Int J Environ Sci Technol 4(4):463–470

  • Sharonova N, Breus I (2012) Tolerance of cultivated and wild plants of different taxonomy to soil contamination by kerosene. Sci Total Environ 424:121–129

    Article  CAS  Google Scholar 

  • Sims RC, Overcash M (1983) Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems. In: Residue reviews, Springer, pp 1–68

  • Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81(9):1084–1090

    Article  CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18(5):647–658

    Article  Google Scholar 

  • Sverdrup LE, Krogh PH, Nielsen T, Kjær C, Stenersen J (2003) Toxicity of eight polycyclic aromatic compounds to red clover (Trifolium pratense), ryegrass (Lolium perenne), and mustard (Sinapsis alba). Chemosphere 53(8):993–1003

    Article  CAS  Google Scholar 

  • Thawale PR, Juwarkar AA, Singh SK (2006) Resource conservation through land treatment of municipal wastewater. Curr Sci 704–711

  • Tomar R, Sharma A, Jajoo A (2015) Assessment of phytotoxicity of anthracene in soybean (Glycine max) with a quick method of chlorophyll fluorescence. Plant Biol (Stuttg) 17(4):870–876

    Article  CAS  Google Scholar 

  • Tomar RS, Jajoo A (2013) A quick investigation of the detrimental effects of environmental pollutant polycyclic aromatic hydrocarbon fluoranthene on the photosynthetic efficiency of wheat (Triticum aestivum). Ecotoxicology 22(8):1313–1318

    Article  CAS  Google Scholar 

  • Tran TH, Gati EM, Eshel A, Winters G (2018) Germination, physiological and biochemical responses of acacia seedlings (Acacia raddiana and Acacia tortilis) to petroleum contaminated soils. Environ Pollut 234:642–655

    Article  CAS  Google Scholar 

  • US EPA Method 3052 (1996) Microwave assisted acid digestion of siliceous and organically based matrices

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321(1–2):385–408

    Article  CAS  Google Scholar 

  • Widdowson MA, Shearer S, Andersen RG, Novak JT (2005) Remediation of polycyclic aromatic hydrocarbon compounds in groundwater using poplar trees. Environ Sci Technol 39(6):1598–1605

    Article  CAS  Google Scholar 

  • Yateem A, Al-Sharrah T, Bin-Haji A (2007) Investigation of microbes in the rhizosphere of selected grasses for rhizoremediation of hydrocarbon-contaminated soils. Soil Sediment Contam: Int J 16(3):269–280

    Article  CAS  Google Scholar 

  • Yeung AT, Gu Y-Y (2011) A review on techniques to enhance electrochemical remediation of contaminated soils. J Hazard Mater 195:11–29

    Article  CAS  Google Scholar 

  • Zanaroli G, Di Toro S, Todaro D, Varese GC, Bertolotto A, Fava F (2010) Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms. Microb Cell Fact 9(1):10

    Article  CAS  Google Scholar 

  • Zhang Z, Gai L, Hou Z, Yang C, Ma C, Wang Z, Xu P (2010) Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils. Bioresour Technol 101(21):8452–8456

    Article  CAS  Google Scholar 

  • Zhang Z, Zhou Q, Peng S, Cai Z (2010) Remediation of petroleum contaminated soils by joint action of Pharbitis nil L. and its microbial community. Sci Total Environ 408(22):5600–5605

    Article  CAS  Google Scholar 

  • Zhu H, Gao Y, Li D (2018) Germination of grass species in soil affected by crude oil contamination. Int J Phytoremediat 20(6):567–573

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziaedin Badehian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haroni, N.N., Badehian, Z., Zarafshar, M. et al. The effect of oil sludge contamination on morphological and physiological characteristics of some tree species. Ecotoxicology 28, 507–519 (2019). https://doi.org/10.1007/s10646-019-02034-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-019-02034-0

Keywords

Navigation