Skip to main content
Log in

Impact of five insecticides used to control citrus pests on the parasitoid Ageniaspis citricola Longvinovskaya (Hymenoptera: Encyrtidae)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The parasitoid Ageniaspis citricola Longvnovskaya is a main biological control agent of the citrus leafminer Phyllocnistis citrella Stainton, an insect pest that causes considerable damage to citrus worldwide. However, the use of pesticides to control arthropod pests can reduce the effectiveness of parasitoids and disrupt integrated pest management in citrus groves. This study evaluated the impact on A. citricola of five insecticides that are used to control arthropod pests in citrus. Our results indicated that imidacloprid, chlorpyrifos, bifenthrin and β-cyfluthrin were harmful (mortality >89 %) to A. citricola adults; whereas abamectin did not cause significant mortality and was considered harmless to the parasitoid. In addition to causing high mortality, imidacloprid and bifenthrin were considered moderately persistent, because they caused <25 % mortality to 17 and 24 days after spraying (DAS), respectively. Chlorpyrifos and β-cyfluthrin were considered slightly persistent (mortality <25 %, 7 DAS). Although abamectin was considered harmless to A. citricola adults, had a short life (mortality <25 %, 3 DAS), and did not significantly affect the parasitism rate, the number and viability of pupae, or the longevity of A. citricola, this insecticide significantly reduced the proportion of females in the progeny compared to the control treatment. Therefore, semi-field and field studies that consider demographic parameters are needed to evaluate the impacts of these insecticides on the A. citricola parasitoid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Achor DS, Browning H, Albrigo LG (1997) Anatomical and histochemical effects of feeding by citrus leafminer larvae (Phyllocnistis citrella Stainton) in citrus leaves. J Am Soc Hort Sci 122:829–836

    Google Scholar 

  • Aggarwal N, Brar DS (2006) Effects of different neem preparations in comparison to synthetic insecticides on the whitefly parasitoid Encarsia sophia (Hymenoptera: Aphelinidae) and the predator Chrysoperla carnea (Neuroptera: Chrysopidae) on cotton under laboratory conditions. J Pest Sci 79:201–207

    Article  Google Scholar 

  • Agrofit (2015) Sistema de Agrotóxicos Fitossanitários—Ministério da Agricultura, Pecuária e Abastecimento, Brasil. http://extranet.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed in 24 Feb 2015

  • Alix A, Cortesero AM, Nénon JP, Anger JP (2001) Selectivity assessment of chlorfenvinphos reevaluated by including physiological and behavioral effects on an important beneficial insect. Environ Toxicol Chem 20:2530–2536

    Article  CAS  Google Scholar 

  • Arthur FH (1994) Residual efficacy of cyfluthrin emulsifiable concentrate and wettable powder formulations on porous concrete and on concrete sealed with commercial products prior to insecticide application. J Stored Prod Res 30:79–86

    Article  CAS  Google Scholar 

  • Bacci L, Crespo ALB, Galvan TL, Pereira EJG, Picanço MC, Silva GA, Chediak M (2007) Toxicity of insecticides to the sweetpotato whitefly (Hemiptera: Aleyrodidae) and its natural enemies. Pest Manag Sci 63:699–706

    Article  CAS  Google Scholar 

  • Banerjee T, Banerjee D, Roy S, Banerjee H, Pal S (2012) A comparative study on the persistence of imidacloprid and beta-cyfluthrin in vegetables. Bull Environ Contam Toxicol 89:193–196

    Article  CAS  Google Scholar 

  • Bartlett MS (1937) Properties of sufficiency and statistical tests. Proc R Soc Lond 160:268–282

    Article  Google Scholar 

  • Beattie A (2004) Citrus leafminer, 4th edn. NSW Department of Primary Industries, University of Western Sydney, Sydney

    Google Scholar 

  • Behlau F, Belasque-Jr J (2014) Cancro cítrico: a doença e seu controle. Fundecitrus, Araraquara

    Google Scholar 

  • Berg GL, Sine C, Meister RT, Poplyk J (2003) Farm chemicals handbook. Meister, Willoughby

    Google Scholar 

  • Biondi A, Zappalà L, Stark JD, Desneux N (2013) Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? Plos One 8:76458

    Article  Google Scholar 

  • Bjorksten AT, Robinson M (2005) Juvenile and sublethal effects of selected pesticides on the leafminer parasitoid Hemiptarsenus varicornis and Diglyphus isaea (Hymenoptera: Eulophidae) from Australia. J Econ Entomol 98:1831–1838

    Article  CAS  Google Scholar 

  • Campos JM, Martinez-Ferrer MT, Forés V (2008) Secondary effects of seven pesticides on Anagyrus pseudococci (Girault) and Leptomastix dactylopii Howard (Hymenoptera: Encyrtidae), parasitoids of Planoccocus citri (Risso) (Hemiptera: Pseudococcidae). IOBC/WPRS Bull 38:111–116

    Google Scholar 

  • Carmo EL, Bueno AF, Bueno RCOF (2010) Pesticide selectivity for the insect egg parasitoid Telenomus remus. Biocontrol 55:455–464

    Article  CAS  Google Scholar 

  • Carvalho GA, Carvalho CF, Ferreira MN (2011) Toxicidade de acaricidas a ovos e adultos de Ceraeochrysa cubana (Hagen, 1861) (Neuroptera: Chrysopidae). Ciênc Agrotec 35:165–171

    Article  CAS  Google Scholar 

  • Chagas MCM, Parra JRP (2000) Phyllocnistis citrella Stainton, 1856 (Lepidoptera: Gracillariidae): Técnica de criação e biologia em diferentes temperaturas. An Soc Entomol Bras 29:143–148

    Article  Google Scholar 

  • Chagas MCM, Parra JRP, Milano P, Nascimento AM, Parra ALGC, Yamamoto PT (2002) Ageniaspis citricola criação e estabelecimento no Brasil. In: Parra JRP, Botelho PSM, Corrêa-Ferreira BS, Bento JMS (eds) Controle biológico no Brasil: parasitóides e predadores. Manole, São Paulo, pp 377–394

    Google Scholar 

  • Cook JM (1993) Sex determination in the Hymenoptera: a review of models and evidence. Heredity 71:421–435

    Article  Google Scholar 

  • Croft BA (1990) Arthropod biological control agents and pesticides. Wiley, New York

    Google Scholar 

  • Delpuech JM, Meyet J (2003) Reduction in the sex ratio of the progeny of a parasitoid wasp (Trichogramma brassicae) surviving the insecticide chlorpyrifos. Arch Environ Contam Toxicol 45:203–208

    Article  CAS  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Ann Rev Entomol 52:81–106

    Article  CAS  Google Scholar 

  • Dutcher JD (2007) A review of resurgence and replacement causing pest outbreaks in IPM. In: Ciancio A, Mukerji KG (eds) General concepts in integrated pest and disease management. Springer, Amsterdam, pp 27–43

    Chapter  Google Scholar 

  • Garcia-Marí F, Granda C, Zaragoza S, Agusti M (2002) Impact of Phyllocnistis citrella (Lepidoptera: Gracillariidae) on leaf area development and yield of mature citrus trees in the Mediterranean area. J Econ Entomol 95:966–974

    Article  Google Scholar 

  • Getzin LW (1981) Dissipation of chlorpyrifos from dry soil surfaces. J Econ Entomol 74:707–713

    Article  CAS  Google Scholar 

  • Godoy MS, Carvalho GA, Carvalho BF, Lasmar O (2010) Seletividade fisiológica de inseticidas em duas espécies de crisopídeos. Pesq Agropec Bras 45:1253–1258

    Article  Google Scholar 

  • Gonzalez-Zamora JE, Castillo ML, Avilla C (2013) Side effects of different pesticides used in citrus on the adult stage of the parasitoid Aphytis melinus DeBach (Hymenoptera Aphelinidae) and its progeny. Span J Agric Res 11:494–504

    Article  Google Scholar 

  • Grafton-Cardwell EE, Godfrey KE, Headrick DH, Mauk PA, Peña JE (2008) Citrus leafminer and citrus peelminer. http://anrcatalog.ucdavis.edu. Accessed 20 March 2015

  • Guedes RNC, Cutler GC (2014) Insecticide-induced hormesis and arthropod pest management. Pest Manag Sci 70:690–697

    Article  CAS  Google Scholar 

  • Guedes RNC, Smagghe G, Stark JD, Desneux N (2016) Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annu Rev Entomol 61:3.1–3.20

    Article  Google Scholar 

  • Hall DG, Nguyen R (2010) Toxicity of pesticides to Tamarixia radiata, a parasitoid of the Asian citrus psyllid. Biocontrol 55:601–611

    Article  CAS  Google Scholar 

  • Hall DG, Gottwald TR, Bock CH (2010) Exacerbation of citrus canker by citrus leafminer Phyllocnistis citrella in Florida. Fla Entomol 93:558–566

    Article  Google Scholar 

  • Hardin MR, Benrey B, Coll M, Lamp WO, Roderick GK, Barbosa P (1995) Arthropod pest resurgence: an overview of potential mechanisms. Crop Prot 14:3–18

    Article  Google Scholar 

  • Hinde J, Demétrio CGB (1998) Overdispersion: models and estimation. Comput Stat Data Anal 27:151–170

    Article  Google Scholar 

  • Idris AB, Grafius E (1993) Pesticides affect immature stages of Diadegma insulare (Hymenoptera, Ichneumonidae) and its host, the diamondback moth (Lepidoptera, Plutellidae). J Econ Entomol 86:1203–1212

    Article  CAS  Google Scholar 

  • Iqbal M, Ismail F, Wricw DJ (1996) Loss of residual activity of abamectin on foliage against adult hymenopteran parasitoids. Entomophaga 41:117–124

    Article  CAS  Google Scholar 

  • Jesus CR, Redaelli LR, Dal Soglio FK (2008) Flutuação populacional de Phyllocnistis citrella Stainton em Citrus deliciosa e no híbrido Murcott Citrus sinensis × Citrus reticulata. Cienc Rural 38:593–600

    Article  Google Scholar 

  • Jesus-Jr WC, Belasque-Jr J, Amorim L, Christiano RSC, Parra JRP, Bergamin-Filho A (2006) Injuries caused by citrus leafminer (Phyllocnistis citrella) exacerbate citrus canker (Xanthomonas axonopodis pv. citri) infection. Fitopatol Bras 31:277–283

    Article  Google Scholar 

  • Johnson SJ, Henne DC (2003) Biological control of the citrus leafminer with Ageniaspis citricola (Hymenoptera: Encyrtidae) in Louisiana. Proc Fla State Hort Soc 116:224–226

    Google Scholar 

  • Legaspi JC, Legaspi-Jr BC, Saldaña RR (1999) Laboratory and field evaluations of biorational insecticides against the Mexican rice borer (Lepidoptera: Pyralidae) and a parasitoid (Hymenoptera: Braconidae). J Econ Entomol 92:804–810

    Article  CAS  Google Scholar 

  • Lira ACS, Zanardi OZ, Beloti VH, Bordini GP, Yamamoto PT, Parra JRP, Carvalho GA (2015) Lethal and sublethal impacts of acaricides on Tamarixia radiata, an important ectoparasitoid of Diaphorina citri. J Econ Entomol 108:1–11

    Article  Google Scholar 

  • Mafi SA, Ohbayashi N (2006) Toxicity of insecticides to the citrus leafminer, Phyllocnistis citrella, and its parasitoids, Chrysocharis pentheus and Sympiesis striatipes (Hymenoptera: Eulophidae). Appl Entomol Zool 41:33–39

    Article  CAS  Google Scholar 

  • Mahdavi M, Saber M, Rafiee-Dastjerdi H, Mehrvar A (2011) Comparative study of the population level effects of carbaryl and abamectin on larval ectoparasitoid Habrobracon hebetor Say (Hymenoptera: Braconidae). Biocontrol 56:823–830

    Article  CAS  Google Scholar 

  • Mansour R, Suma P, Mazzeo G, Lebdi KG, Russo A (2011) Evaluating side effects of newer insecticides on the vine mealybug parasitoid Anagyrus sp. near pseudococci, with implications for integrated pest management in vineyards. Phytoparasitica 39:369–376

    Article  CAS  Google Scholar 

  • Martinez AM, Chavarrieta JM, Morales SI, Caudilho KB, Figueroa JI, Diaz O, Bujanos R, Gomez B, Viñuela E, Pineda S (2015) Behavior of Tamarixia triozae females (Hymenoptera: Eulophidae) attacking Bactericera cockerelli (Hemiptera: Triozidae) and effects of three pesticides on this parasitoid. Environ Entomol 44:1–9

    Article  Google Scholar 

  • Michaud JP, Grant AK (2003) IPM-compatibility of foliar insecticides for citrus: indices derived from toxicity to beneficial insects from four orders. J Insect Sci 3:1–10

    Google Scholar 

  • Morse JG, Bellows-Jr TS, Gaston LK, Iwata Y (1987) Residual toxicity of acaricides to three beneficial species on California citrus. J Econ Entomol 80:953–960

    Article  Google Scholar 

  • Milano P, Parra JRP (2003) Influência de três temperaturas na biologia e na capacidade de parasitismo de Ageniaspis citricola Logvinovskaya (Hymenoptera: Encyrtidae) em laboratório. Neotrop Entomol 32:299–303

    Article  Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc 135:370–384

    Google Scholar 

  • Neves MF, Trombin VG, Milan P, Lopes FF, Cressoni F, Kalaki R (2011) O retrato da citricultura brasileira. Markestrat Centro de Pesquisa e Projetos em Marketing e Estratégia, São Paulo

    Google Scholar 

  • Paiva PEB (2011) Abamectina em citros: 30 anos de uso. Rev Citric Atual 84:18–21

    Google Scholar 

  • Paiva PEB, Yamamoto PT (2015) Natural parasitism of citrus leafminer (Lepidoptera: Gracillariidae) over eight years in seven citrus regions of São Paulo, Brazil. Fla Entomol 98:660–664

    Article  Google Scholar 

  • Paiva PEB, Gravena S, Amorim LCS (2000) Introdução do parasitoide Ageniaspis citricola Logvinovskaya para controle biológico da minadora das folhas dos citros Phyllocnistis citrella Stainton no Brasil. Laranja 21:149–154

    Google Scholar 

  • Peña JE, Hunsberger A, Schaffer B (2000) Citrus leafminer (Lepidoptera: Gracillariidae) density: effect on yield of Tahiti lime. J Econ Entomol 93:374–379

    Article  Google Scholar 

  • Powell AC, Burton MS, Pelosi R, Ritenour RA, Bullock RC (2007) Seasonal abundance and insecticidal control of citrus leafminer in a citrus orchard. Hort Science 42:1636–1638

    CAS  Google Scholar 

  • Pozo OJ, Marin JM, Sancho JV, Hernández F (2003) Determination of abamectin and azadirachtin residues in orange samples by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A 992:133–140

    Article  CAS  Google Scholar 

  • Prabhaker N, Morse JG, Castle SJ, Naranjo SE, Henneberry TJ, Toscano NC (2007) Toxicity of seven foliar insecticides to four insect parasitoids attacking citrus and cotton pests. J Econ Entomol 100:1053–1061

    Article  CAS  Google Scholar 

  • Pratissoli D, Milanez AM, Celestino FN, Barbosa WF, Vianna UR, Polanczyk RA, Carvalho JR (2011) Seletividade de inseticidas, recomendados para cucurbitáceas para Trichogramma atopovirilia Oatman & Platner (Hymenoptera: Trichogrammatidae) em condições de laboratório. Rev Ceres 58:661–664

    Article  CAS  Google Scholar 

  • R Development Core Team (2015) R: A language and environment for statistical computing. A Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rosenheim JA, Hoy MA (1986) Intraspecific variation in levels of pesticide resistance in field populations of a parasitoid, Aphytis melinus (Hymenoptera: Aphelinidae): the role of past selection pressures. J Econ Entomol 79:1161–1173

    Article  CAS  Google Scholar 

  • Roubos CR, Rodriguez-Saona C, Holdcraft R, Mason KS, Isaacs R (2014) Relative toxicity and residual activity of insecticides used in blueberry pest management: mortality of natural enemies. J Econ Entomol 107:277–285

    Article  Google Scholar 

  • Salvo A, Valladares GR (2007) Parasitoides de minadores de hojas y manejo de plagas. Cienc Inv Agr 34:167–185

    Article  Google Scholar 

  • Santos MS, Zanardi OZ, Pauli KS, Forim MR, Yamamoto PT, Vendramim JD (2015) Toxicity of an azadirachtin-based biopesticide on Diaphorina citri Kuwayama (Hemiptera: Liviidae) and its ectoparasitoid Tamarixia radiata (Waterston) (Hymenoptera: Eulophidae). Crop Prot 74:116–123

    Article  CAS  Google Scholar 

  • Schaffer B, Peña JE, Colls AM, Hunsberger A (1997) Citrus leafminer (Lepidoptera: Gracillariidae) in lime: Assessment of leaf damage and effects on photosynthesis. Crop Prot 16:337–343

    Article  Google Scholar 

  • Sétamou M, Rodriguez D, Saldana R, Schwarzlose G, Palrang D, Nelson SD (2010) Efficacy and uptake of soil-applied imidacloprid in the control of Asian citrus psyllid and a citrus leafminer, two foliar-feeding citrus pests. J Econ Entomol 103:1711–1719

    Article  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  • Siegfried B (1993) Comparative toxicity of pyrethroid insecticides to terrestrial and aquatic insects. Environ Toxicol Chem 12:1683–1689

    Article  CAS  Google Scholar 

  • Silva DM, Bueno AF (2014) Toxicity of organic supplies for the egg parasitoid Telenomus podisi. Cienc Rural 44:11–17

    Article  Google Scholar 

  • Smilanick JM, Zalom FG, Ehler LE (1996) Effect of methamidophos residue on the pentatomid egg parasitoids Trissolcus basalis and T. utahensis (Hymenoptera: Scelionidae). Biol Control 6:193–201

    Article  Google Scholar 

  • Stock D, Holloway PJ (1993) Possible mechanisms for surfactant-induced foliar uptake of agrochemicals. Pestic Sci 38:165–177

    Article  CAS  Google Scholar 

  • Suma P, Zappalà L, Mazzeo G, Siscaro G (2009) Lethal and sub-lethal effects of insecticides on natural enemies of citrus scale pests. Biocontrol 54:651–661

    Article  CAS  Google Scholar 

  • Suroshe SS, Gautam RD, Fand BB (2014) Safety evaluation of insecticides on adult Aenasius bambawalei Hayat (Hymenoptera: Encyrtidae), a solitary endoparasitoid of the mealybug, Phenacoccus solenopsis Tinsley. Indian J Entomol 76:224–228

    Google Scholar 

  • Tan B, Huang M (1996) Managing the citrus leafminer in China. In: Hoy MA (ed), Managing the citrus leafminer. Gainesville, pp 49–52

  • Tillman PG (1995) Susceptibility of Microplitis croceipes and Cardiochiles nigriceps (Hymenoptera: Braconidae) to field rates of selected cotton insecticides. J Entomol Sci 30:390–396

    CAS  Google Scholar 

  • Udayagiri S, Norton AP, Welter SC (2000) Integrating pesticide effects with inundative biological control: interpretation of pesticide toxicity curves for Anaphes iole in strawberries. Entomol Exp Appl 95:87–95

    Article  CAS  Google Scholar 

  • Van de Veire M, Sterk G, Van der Staaij M, Ramakers PMJ, Tirry L (2002) Sequential testing scheme for the assessment of the side-effects of plant protection products on the predatory bug Orius laevigatus. Biocontrol 47:101–113

    Article  Google Scholar 

  • Vanaclocha P, Vidal-Quist C, Oheix S, Montón H, Planes L, Catalán J, Tena A, Verdú MJ, Urbaneja A (2013) Acute toxicity in laboratory tests of fresh and aged residues of pesticides used in citrus on the parasitoid Aphytis melinus. J Pest Sci 86:329–336

    Article  Google Scholar 

  • Vargas HA, Vargas HE, Bobadilla DE, Morales AA, Mendoza RE (2001) Acción parasítica de Ageniaspis citricola Logvinovskaya (Hyrnenoptera: Encyrtidae) sobre Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) en el valle de Azapa, I Región, Chile. Idesia 19:39–42

    Google Scholar 

  • Villanueva-Jiménez JA, Hoy MA (1998) Toxicity of pesticides to the citrus leafminer and its parasitoid Ageniaspis citricola evaluated to assess their suitability for an IPM program in citrus nurseries. Biocontrol 43:357–388

    Article  Google Scholar 

  • Villanueva-Jiménez J, Hoy MA, Davis FS (2000) Field evaluation of integrated pest management-compatible pesticides for the citrus leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae) and its parasitoid Ageniaspis citricola (Hymenoptera: Encyrtidae). J Econ Entomol 93:357–367

    Article  Google Scholar 

  • Wang HY, Yang Y, Su JY, Shen JL, Gao CF, Zhu YC (2008) Assessment of the impact of insecticides on Anagrus nilaparvatae (Pang et Wang) (Hymenoptera: Mymanidae), an egg parasitoid of the rice planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Crop Prot 27:514–522

    Article  CAS  Google Scholar 

  • Yamamoto PT, Zanardi OZ (2013) Atualização de manejo do ácaro purpúreo Panonychus citri. Rev Citric Atual 96:16–17

    Google Scholar 

  • Zappalà L, Hoy MA (2004) Reproductive strategies and parasitization behavior of Ageniaspis citricola, a parasitoid of the citrus leafminer Phyllocnistis citrella. Entomol Exp App 113:135–143

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES) and the National Council for Scientific and Technological Development (CNPq—Grant Number 140651/2013-6) for financial support and award of scholarships. The authors also thank Janet W. Reid for revising the English text. The authors are researchers of “Luiz de Queiroz” College of Agriculture/University of São Paulo (ESALQ/USP), a renowned Brazilian University and do not have affiliation or received grants from any company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matheus Rovere de Morais.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. The authors agree with the publication of the manuscript in this form.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Morais, M.R., Zanardi, O.Z., Rugno, G.R. et al. Impact of five insecticides used to control citrus pests on the parasitoid Ageniaspis citricola Longvinovskaya (Hymenoptera: Encyrtidae). Ecotoxicology 25, 1011–1020 (2016). https://doi.org/10.1007/s10646-016-1658-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-016-1658-2

Keywords

Navigation