Skip to main content
Log in

PIXE-electrophoresis shows starving collembolan reallocates protein-bound metals

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

One of multiple functions of metalloproteins is to provide detoxification to excess metal levels in organisms. Here we address the induction and persistence of a range of low to high molecular weight copper- and zinc binding proteins in the collembolan species Tetrodontophora bielanensis exposed to copper- and zinc-enriched food, followed by a period of recovery from metal exposure, in absence and presence of food. After 10 days of feeding copper and zinc contaminated yeast, specimens were either moved to ample of leaf litter material from their woodland stand of origin or starved (no food offered). The molecular weight distribution of metal binding proteins was determined by native polyacryl gel electrophoresis. One gel was stained with Comassie brilliant blue and a duplicate gel dried and scanned for the amount of copper and zinc by particle-induced X-ray emission. Specimens exposed to copper and recovered from it with ample of food had copper bound to two groups of rather low molecular weight proteins (40–50 kDa) and two of intermediate size (70–80 kDa). Most zinc in specimens from the woodland stand was bound to two large proteins of about 104 and 106 kDa. The same proteins were holding some zinc in metal-exposed specimens, but most zinc was found in proteins <40 kDa in size. Specimens recovered from metal exposure in presence of ample of food had the same distribution pattern of zinc binding proteins, whereas starved specimens had zinc as well as copper mainly bound to two proteins of 8 and 10 kDa in size. Thus, the induction and distribution of copper- and zinc-binding proteins depend on exposure conditions, and the presence of low molecular weight binding proteins, characteristic of metallothioneins, was mainly limited to starving conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amiard J-C, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202

    Article  CAS  Google Scholar 

  • Babczyńska A, Wilczek G, Wilczek P, Szulińska E, Witas I (2011a) Metallothioneins and energy budget indices in cadmium and copper exposed spiders Agelena labyrinthica in relation to their developmental stage, gender and origin. Comp Biochem Physiol C 154:161–171

    Google Scholar 

  • Babczyńska A, Wilczek G, Szulińska E, Franiel I (2011b) Quantitative immunodetection of meallothioneins in relation to metals concentration in spiders from variously polluted areas. Ecotoxicol Environ Saf 74:1498–1503

    Article  Google Scholar 

  • Baudrimont M, Lemaire-Gony S, Ribeyre F, Metivaud J, Boudou A (1997) Seasonal variations of metallothionein concentrations in the Asiatic clam (Corbicula fluminea). Comp Biochem Physiol C 118:361–367

    Google Scholar 

  • Bengtsson G, Gunnarsson T (1984) A micromethod for the determination of metal ions in biological tissues by furnace atomic absorption spectrophotometry. Microchem J 29:282–287

    Article  CAS  Google Scholar 

  • Bengtsson G, Ek H, Rundgren S (1992) Evolutionary response of earthworms to long-term metal exposure. Oikos 63:289–297

    Article  Google Scholar 

  • Bertini I, Sigel A, Sigel H (2001) Handbook of metalloproteins. Marcel Dekker, New York

    Google Scholar 

  • Binet MRB, Ma R, McLeod CW, Poole RK (2003) Detection and characterization of zinc- and cadmium-binding proteins in Escherichia coli by gel electrophoresis and laser ablation-inductively coupled plasma-mass spectrometry. Anal Biochem 318:30–38

    Article  CAS  Google Scholar 

  • Bremner I, Davies NT (1975) The induction of metallothionein in rat liver by zinc injection and restriction of food intake. Biochem J 149:733–738

    Article  CAS  Google Scholar 

  • Capdevila M, Atrian S (2011) Metallothionein protein evolution: a miniassay. J Biol Inorg Chem 16:977–989

    Article  CAS  Google Scholar 

  • Dallinger R, Wieser W (1984) Molecular fractionation of Zn, Cu, Cd and Pb in the midgut gland of Helix Pomatia L. Comp Biochem Physiol C 79:125–129

    Article  CAS  Google Scholar 

  • Dallinger R, Berger B, Hunziger P, Kägi JHR (1997) Metallothionein in snail Cd and Cu metabolism. Nature 388:237–238

    Article  CAS  Google Scholar 

  • Dallinger R, Lagg B, Egg M, Schipflinger R, Chabicovsky M (2004) Cd accumulation and Cd-Metallothionein as a biomarker in Cepaea hortensis (Helcidae, Pulmonata) from laboratory exposure and metal-polluted habitats. Ecotoxicology 13:757–772

    Article  CAS  Google Scholar 

  • Degtyarenko K (2000) Bioinorganic motifs: towards functional classification of metalloproteins. Bioinformatics 16:851–864

    Article  CAS  Google Scholar 

  • den Besten PJ, Herwig HJ, Zandee DI, Voogt PA (1990) Cadmium accumulation and metallothionein-like proteins in the sea star Asterias rubens. Arch Environ Contam Toxicol 19:858–862

    Article  Google Scholar 

  • Engel DW, Brouwer M, Mercaldo-Allen R (2001) Effects of molting and environmental factors on trace metal body-burdens and hemocyanin concentrations in the American lobster, Homarus americanus. Mar Environ Res 52:257–269

    Article  CAS  Google Scholar 

  • Finger JM, Smith JD (1987) Molecular association of Cu, Zn, Cd and 210Po in the digestive gland of the squid Nototodarus gouldi. Mar Biol 95:87–91

    Article  CAS  Google Scholar 

  • Hashemi S, Kunwar PS, Blust R, De Boeck G (2008) Differential metallothionen induction patterns in fed and starved carp (Cyprinus carpio) during waterborne copper exposure. Environ Toxicol Chem 27:2154–2158

    Article  CAS  Google Scholar 

  • Hensbergen PJ, Donker MH, van Velzen MJM, Roelofs D, van der Schors RC, Hunziker PE, van Straalen NM (1999) Primary structure of a cadmium-induced metallothionein from the insect Orchesella cincta (Collembola). Eur J Biochem 259:197–203

    Article  CAS  Google Scholar 

  • Hensbergen PJ, Donker MH, Hunziger PE, van der Schors RC, van Straalen NM (2001) Two metal-binding peptides from the insect Orchesella cincta (Collembola) as a result of metallothionein cleavage. Insect Biochem Mol Biol 31:1105–1114

    Article  CAS  Google Scholar 

  • Holwerda DA (1991) Cadmium kinetics in freshwater clams. V. Cadmium-copper interaction in metal accumulation by Anodonta cygnea and characterization of the metal-binding protein. Arch Environ Contam Toxicol 21:432–437

    Article  CAS  Google Scholar 

  • Irving H, Williams RJP (1948) Order of stability of metal complexes. Nature 162:746–747

    Article  CAS  Google Scholar 

  • Janssen H, Dallinger R (1991) Diversification of cadmium-binding proteins due to different levels of contamination in Arion lusitanicus. Arch Environ Contam Toxicol 20:132–137

    Article  CAS  Google Scholar 

  • Jiménez I, Gotteland M, Zarzuelo A, Uauy R, Speisky H (1997) Loss of the metal binding properties of metallothionein induced by hydrogen peroxide and free radicals. Toxicology 120:37–46

    Article  Google Scholar 

  • Kägi JHR (1991) Overview of metallothionein. Methods Enzymol 205:613–626

    Article  Google Scholar 

  • Nejmeddine A, Sautiere P, Dhainaut-Courtois N, Baert J-L (1992) Isolation and characterization of a Cd-binding protein from Allolobophora caliginosa (Annelida, Oligochaeta): distinction from metallothioneins. Comp Biochem Physiol Pharmacol Toxicol Endocrinol 101:601–605

    Article  CAS  Google Scholar 

  • Nielsen JL, Abildtrup A, Christensen J, Watson P, Cox A, McLeod CW (1998) Laser ablation inductively coupled plasma-mass spectrometry in combination with gel electrophoresis: a new strategy for speciation of metal binding serum proteins. Spectrochim Acta Part B 53:339–345

    Article  Google Scholar 

  • Nordberg GF, Fowler BA, Nordberg M, Friberg LT (2007) Handbook on the toxicology of metals. Academic Press, Amsterdam Boston

    Google Scholar 

  • O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060

    Article  Google Scholar 

  • Palacios Ò, Atrian S, Capdevila M (2011) Zn- and Cu-thioneins: a functional classification for metallothioneins? J Biol Inorg Chem 16:991–1009

    Article  CAS  Google Scholar 

  • Roegener J, Lutter P, Reinhardt R, Blüggel M, Meyer HE, Anselmetti D (2003) Ultrasensitive detection of unstained proteins in acrylamide gels by native UV fluorescence. Anal Chem 75:157–159

    Article  CAS  Google Scholar 

  • Rogival D, van Campenhout K, Goenaga Infante H, Hearn R, Scheirs J, Blust R (2007) Induction and metal speciation of metallothionein in wood mice (Apodemus sylvaticus) along a metal pollution gradient. Environ Toxicol Chem 26:506–514

    Article  CAS  Google Scholar 

  • Sato M, Bremner I (1993) Oxygen free radicals and metallothionein. Free Radic Biol Med 14:325–337

    Article  CAS  Google Scholar 

  • Serafim MA, Company RM, Bebianno MJ, Langston WJ (2002) Effect of temperature and size on metallothionein synthesis in the gill of Mytilus galloprovincialis exposed to cadmium. Mar Environ Res 54:361–365

    Article  CAS  Google Scholar 

  • Stürzenbaum SR, Winters C, Galay M, Morgan AJ, Kille P (2001) Metal ion trafficking in earthworms. Identification of a cadmium-specific metallothionein. J Biol Chem 276:34013–34018

    Article  Google Scholar 

  • Susnea I, Bernevic B, Wicke M, Ma L, Liu S, Schellander K, Przybylski M (2013) Application of MALDI-TOF-mass spectrometry to proteome analysis using stain-free gel electrophoresis. In: Cai Z, Liu S (eds) Applications of MALDI-TOF spectroscopy, Topics in current chemistry 331. Springer, Berlin, pp 37–54

    Google Scholar 

  • Sutherland DEK, Stillman MJ (2011) The „magic numbers“of metallothionein. Metallomics 3:444–463

    Article  CAS  Google Scholar 

  • Tainer JA, Roberts VA, Getzoff ED (1991) Metal-binding sites in proteins. Curr Opin Biotechnol 2:582–591

    Article  CAS  Google Scholar 

  • Ulrich W, Fiera C (2010) Environmental correlates of body size distributions of European springtails (Hexapoda: Collembola). Glob Ecol Biogeogr 19:905–915

    Article  Google Scholar 

  • Weiss W, Weiland F, Görg A (2009) Protein detection and quantitation technologies for gel-based proteome analysis. Proteomics Methods Mol Biol 564:59–82

    Article  CAS  Google Scholar 

  • Yamamura M, Mori T, Suzuki KT (1981) Metallothionein induced in the earthworm. Experentia 37:1187–1189

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Heike Reise, Senckenberg Museum for Natural Science Görlitz, for providing T. bielanensis. The study was financed by the European Environmental Research Organization (EERO), The German Academic Exchange Service (DAAD, Bonn), and the Swedish Institute (SI, Stockholm). Thanks are also due to Sten Rundgren, Lund University, and to Kåseberga-Fisk AB, Löderup, for motivational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Göran Bengtsson.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bengtsson, G., Pallon, J., Nilsson, C. et al. PIXE-electrophoresis shows starving collembolan reallocates protein-bound metals. Ecotoxicology 25, 115–120 (2016). https://doi.org/10.1007/s10646-015-1573-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1573-y

Keywords

Navigation