Skip to main content
Log in

Metagenomic insights into tetracycline effects on microbial community and antibiotic resistance of mouse gut

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Antibiotics have been widely used for disease prevention and treatment of the human and animals, and for growth promotion in animal husbandry. Antibiotics can disturb the intestinal microbial community, which play a fundamental role in animals’ health. Misuse or overuse of antibiotics can result in increase and spread of microbial antibiotic resistance, threatening human health and ecological safety. In this study, we used Illumina Hiseq sequencing, 1H nuclear magnetic resonance spectroscopy and metagenomics approaches to investigate intestinal microbial community shift and antibiotic resistance alteration of the mice drinking the water containing tetracycline hydrochloride (TET). Two-week TET administration caused reduction of gut microbial diversity (from 194 to 89 genera), increase in Firmicutes abundance (from 24.9 to 39.8 %) and decrease in Bacteroidetes abundance (from 69.8 to 51.2 %). Metagenomic analysis showed that TET treatment affected the intestinal microbial functions of carbohydrate, ribosomal, cell wall/membrane/envelope and signal transduction, which is evidenced by the alteration in the metabolites of mouse serum. Meanwhile, in the mouse intestinal microbiota, TET treatment enhanced the abundance of antibiotic resistance genes (ARGs) (from 307.3 to 1492.7 ppm), plasmids (from 425.4 to 3235.1 ppm) and integrons (from 0.8 to 179.6 ppm) in mouse gut. Our results indicated that TET administration can disturb gut microbial community and physiological metabolism of mice, and increase the opportunity of ARGs and mobile genetic elements entering into the environment with feces discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Nabulsi AA, Osaili TM, Shaker RR, Olaimat AN, Jaradat ZW, Elabedeen NAZ, Holley RA (2015) Effects of osmotic pressure acid or cold stresses on antibiotic susceptibility of Listeria monocytogenes. Food Microbiol 46:154–160

    Article  CAS  Google Scholar 

  • Antunes LCM, Han J, Ferreira RB, Lolić P, Borchers CH, Finlay BB (2011) Effect of antibiotic treatment on the intestinal metabolome. Antimicrob Agents Chemother 55(4):1494–1503

    Article  CAS  Google Scholar 

  • Barlow M (2009) What antimicrobial resistance has taught us about horizontal gene transfer. Horiz Gene Transf 532:397–411

    Article  CAS  Google Scholar 

  • Butaye P, Devriese LA, Haesebrouck F (2003) Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on Gram-positive bacteria. Clin Microbiol Rev 16(2):175–188

    Article  CAS  Google Scholar 

  • Cani PD, Bibiloni R, Knauf C, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481

    Article  CAS  Google Scholar 

  • Chee-Sanford JC, Aminov RI, Krapac I, Garrigues-Jeanjean N, Mackie RI (2001) Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl Environ Microb 67(4):1494–1502

    Article  CAS  Google Scholar 

  • Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, Gao Z, Mahana D, Raju K, Teitler I, Li HL, Alekseyenko AV, Blaser MJ (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488(7413):621–626

    Article  CAS  Google Scholar 

  • Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol R 65:232–260

    Article  CAS  Google Scholar 

  • Ciric L, Mullany P, Roberts AP (2011) Antibiotic and antiseptic resistance genes are linked on a novel mobile genetic element: Tn6087. J Antimicrob Chemother 66(10):2235–2239

    Article  CAS  Google Scholar 

  • Claus SP, Ellero SL, Berger B, Krause L, Bruttin A, Molina J, Paris A, Want EJ, de Waziers I, Cloarec O (2011) Colonization-induced host-gut microbial metabolic interaction. mBio 2(2):e00271–002100

    Article  Google Scholar 

  • de Vries LE, Vallès Y, Agersø Y, Vaishampayan PA, García-Montaner A, Kuehl JV, Christensen H, Barlow M, Francino MP (2011) The gut as reservoir of antibiotic resistance: microbial diversity of tetracycline resistance in mother and infant. PLoS One 6(6):1–11

    Article  Google Scholar 

  • Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota as revealed by deep 16S rRNA sequencing. PLoS Biol 6(11):e280

    Article  Google Scholar 

  • Dibner JJ, Richards JD (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 84(4):634–643

    Article  CAS  Google Scholar 

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3(9):722–732

    Article  CAS  Google Scholar 

  • Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, Mariat D, Corthier G, Dore J, Henegar C, Rizkalla S, Clement K (2010) Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss links with metabolic and low-grade inflammation markers. Diabetes 59(12):3049–3057

    Article  CAS  Google Scholar 

  • Ghosh S, LaPara TM (2007) The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria. ISME J 1(3):191–203

    Article  CAS  Google Scholar 

  • Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359

    Article  CAS  Google Scholar 

  • Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361(9356):512–519

    Article  Google Scholar 

  • Guo X, Liu S, Wang Z, Zhang X-X, Li M, Wu B (2014) Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere 112:1–8

    Article  CAS  Google Scholar 

  • Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition the gut microbiome and the immune system. Nature 474(7351):327–336

    Article  CAS  Google Scholar 

  • Larsen N, Vogensen FK, Berg FWJ, VanDen Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5(2):1–10

    Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023

    Article  CAS  Google Scholar 

  • Lindon JC, Nicholson JK, Everett JR (1999) NMR spectroscopy of biofluids. Ann R NMR S 38:1–88

    CAS  Google Scholar 

  • Liu B, Pop M (2009) ARDB—antibiotic resistance genes database. Nucleic Acids Res 37:D443–D447

    Article  CAS  Google Scholar 

  • Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai BL, Cole JR, Hashsham SA, Tiedje JM, Stanton TB (2012) In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci USA 109(5):1691–1696

    Article  CAS  Google Scholar 

  • Melville CM, Scott KP, Mercer DK, Flint HJ (2001) Novel tetracycline resistance gene tet (32) in the Clostridium-related human colonic anaerobe K10 and its transmission in vitro to the rumen anaerobe Butyrivibrio fibrisolvens. Antimicrob Agents Chemother 45(11):3246–3249

    Article  CAS  Google Scholar 

  • Moura A, Soares M, Pereira C, Leitão N, Henriques I, Correia A (2009) INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics 25(8):1096–1098

    Article  CAS  Google Scholar 

  • Nicholson JK, Holmes E, Wilson ID (2005) Gut microorganisms mammalian metabolism and personalized health care. Nat Rev Microbiol 3(5):431–438

    Article  CAS  Google Scholar 

  • Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267

    Article  CAS  Google Scholar 

  • Pruden A, Pei R, Storteboom H, Carlson KH (2006) Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol 40(23):7445–7450

    Article  CAS  Google Scholar 

  • Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47(2):241–259

    Article  CAS  Google Scholar 

  • Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203

    Article  CAS  Google Scholar 

  • Salyers AA, Gupta A, Wang Y (2004) Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12(9):412–416

    Article  CAS  Google Scholar 

  • Scanlan PD, Shanahan F, O’Mahony C, Marchesi JR (2006) Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn’s disease. J Clin Microbiol 44(11):3980–3988

    Article  CAS  Google Scholar 

  • Shi P, Jia S, Zhang X-X, Zhang T, Cheng S, Li A (2013) Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. Water Res 47(1):111–120

    Article  CAS  Google Scholar 

  • Sullivan Å, Edlund C, Nord CE (2001) Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 1(2):101–114

    Article  CAS  Google Scholar 

  • Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242–249

    Article  CAS  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1131

    Article  Google Scholar 

  • Vanhoutte T, De Preter V, De Brandt E, Verbeke K, Swings J, Huys G (2006) Molecular monitoring of the fecal microbiota of healthy human subjects during administration of lactulose and Saccharomyces boulardii. Appl Environ Microbiol 72(9):5990–5997

    Article  CAS  Google Scholar 

  • Videnska P, Faldynova M, Juricova H, Babak V, Sisak F, Havlickova H (2013) Chicken faecal microbiota and disturbances induced by single or repeated therapy with tetracycline and streptomycin. BMC Vet Res 9:30

    Article  Google Scholar 

  • Visek WJ (1978) The mode of growth promotion by antibiotics. J Anim Sci 46(5):1447–1469

    Google Scholar 

  • Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406(6797):775–781

    Article  CAS  Google Scholar 

  • Wu N, Qiao M, Zhang B, Cheng WD, Zhu YG (2010) Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China. Environ Sci Technol 44(18):6933–6939

    Article  CAS  Google Scholar 

  • Zeuthen LH, Christensen HR, Frokiaer H (2006) Lactic acid bacteria inducing a weak interleukin-12 and tumor necrosis factor alpha response in human dendritic cells inhibit strongly stimulating lactic acid bacteria but act synergistically with gram-negative bacteria. Clin Vaccine Immunol 13(3):365–375

    Article  CAS  Google Scholar 

  • Zhang X-X, Zhang T (2011) Occurrence, abundance and diversity of tetracycline resistance genes in 15 sewage treatment plants across china and other global locations. Environ Sci Technol 45(7):2598–2604

    Article  CAS  Google Scholar 

  • Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, Crowell MD, Wing R, Rittmann BE (2009a) Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA 106(7):2365–2370

    Article  CAS  Google Scholar 

  • Zhang X-X, Zhang T, Fang HHP (2009b) Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol 82:397–414

    Article  CAS  Google Scholar 

  • Zhang T, Zhang X-X, Ye L (2011) Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS One 6(10):e26041

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang X, Wu B, Cheng S (2012) Evaluating the transcriptomic and metabolic profile of mice exposed to source drinking water. Environ Sci Technol 46(1):78–83

    Article  CAS  Google Scholar 

  • Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, Hashsham SA, Tiedje JM (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA 110(9):3435–3440

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (51290282 and 51278240), the Technology Support Project of Jiangsu Province (BE2013704) and the Fundamental Research Funds for the Central Universities of China (021114310018). We also would like to thank the High Performance Computing Center (HPCC) of Nanjing University for the help of computation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu-Xiang Zhang or Qiming Xian.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Zhang, XX., Wu, B. et al. Metagenomic insights into tetracycline effects on microbial community and antibiotic resistance of mouse gut. Ecotoxicology 24, 2125–2132 (2015). https://doi.org/10.1007/s10646-015-1540-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1540-7

Keywords

Navigation