Skip to main content
Log in

Effect of thiram and of a hydrocarbon mixture on freshwater macroinvertebrate communities in outdoor stream and pond mesocosms: I. Study design, chemicals fate and structural responses

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Higher-tier ecological risk assessment (ERA) in mesocosms is commonly performed in lotic or lentic experimental systems. These systems differ in their physico-chemical and hydrological properties, leading to differences in chemical fate, community characteristics and potential recovery. This raises the issue of the relevance and sensitivity of community-level endpoints in different types of mesocosms. In this study, macroinvertebrate abundance and biomass estimates were used to assess the effects of a dithiocarbamate fungicide, thiram (35 and 170 µg l−1), and a petroleum middle distillate (PMD; 0.01, 0.4, 2 and 20 mg l−1) in outdoor stream and pond mesocosms. Streams were continuously treated during 3 weeks followed by a 2-month long post-treatment period. Ponds were treated weekly for 4 weeks, followed by a 10-month long post-treatment period. Taxonomic structure of macroinvertebrate communities was characterized using the α, β and γ components of taxa richness, Shannon and Gini-Simpson indices. Computations were based either on abundance or biomass data. Results clearly highlighted that the effects of chemicals depended on the exposure regime (for thiram) and type of system (for the PMD). Causes of the differences between streams and ponds in the magnitude and nature of effects include differential sensitivity of taxa dwelling in lentic and lotic systems and the influence of hydrology (e.g., drift from upstream) and mesocosm connectivity on recovery dynamics. This study also showed complementarities in the use of both types of mesocosms to improve the characterization of chemical effects on communities in ERA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anson JR, Pettigrove V, Carew ME, Hoffmann AA (2008) High molecular weight petroleum hydrocarbons differentially affect freshwater benthic macroinvertebrate assemblages. Environ Toxicol Chem 27:1077–1083

    Article  CAS  Google Scholar 

  • ATSDR (2005) Toxicology profile for polyaromatic hydrocarbons. Atlanta, GA, USA. http://www.atsdr.cdc.gov/toxprofiles/tp69.pdf

  • Auber A, Roucaute M, Togola A, Caquet T (2011) Structural and functional effects of conventional and low pesticide input crop protection programs on benthic macroinvertebrate communities in outdoor pond mesocosms. Ecotoxicology 20:2042–2055

    Article  CAS  Google Scholar 

  • Baird DJ, Rubach MN, Van den Brink PJ (2008) Trait-based ecological risk assessment (TERA): the new frontier? Integr Environ Assess Manag 1:2–3

    Article  Google Scholar 

  • Baker AS, McLachlan AJ (1979) Food preferences of Tanypodinae larvae (Diptera, Chironomidae). Hydrobiologia 62:283–288

    Article  Google Scholar 

  • Bassères A, Tramier B (2001) Characterisation of the impact of aqueous industrial waste in mesocosms: biological indicators and pilot streams. Water Sci Technol 44:135–143

    Google Scholar 

  • Bayona Y, Roucaute A, Roucaute M, Gorzerino C, Cailleaud K, Bassères A, Lagadic L, Caquet T (2014a) Secondary production of freshwater zooplankton communities exposed to a fungicide and to a petroleum distillate in outdoor pond mesocosms. Environ Toxicol Chem 33:836–846

    Article  CAS  Google Scholar 

  • Bayona Y, Roucaute A, Roucaute M, Gorzerino C, Cailleaud K, Bassères A, Lagadic L, Caquet T (2014b) Structural and biological trait responses of diatom assemblages to organic chemicals in outdoor flow-through mesocosms. Environ Pollut 192:186–195

    Article  CAS  Google Scholar 

  • Bayona Y, Roucaute A, Roucaute M, Gorzerino C, Cailleaud K, Bassères A, Lagadic L, Caquet T (2014c) Isotopic niche metrics as indicators of toxic stress in two freshwater invertebrates. Sci Total Environ 484:102–113

    Article  CAS  Google Scholar 

  • Bayona Y, Roucaute M, Cailleaud K, Lagadic L, Bassères A, Caquet T (2015) Effect of thiram and of a hydrocarbon mixture on freshwater macroinvertebrates communities in outdoor streams and pond mesocosms: II Biological and ecological traits responses and leaf litter breakdown. Ecotoxicology. doi:10.1007/s10646-015-1531-8

  • Beketov MA, Liess M (2008) Variability of pesticide exposure in a stream mesocosm system: macrophyte-dominated vs. non-vegetated sections. Environ Pollut 156:1364–1367

    Article  CAS  Google Scholar 

  • Bluzat R, Jonot O, Seugé J (1982) Toxicité aiguë d’un fongicide, le thirame (dithiocarbamate) chez le Mollusque Pulmoné d’eau douce Lymnaea stagnalis. In: Leclerc H, Dive D (eds) Les tests de toxicité aiguë en milieu aquatique : méthodologie, standardisation, interprétation. Editions INSERM, Paris, p 106

    Google Scholar 

  • Brock TCM (2013) Priorities to improve the ecological risk assessment and management for pesticides in surface water. Integr Environ Assess Manag 9:64–74

    Article  Google Scholar 

  • Brock TCM, Roessink I, Belgers JDM, Bransen F, Maund SJ (2009) Impact of a benzoyl urea insecticide on aquatic macroinvertebrates in ditch mesocosms with and without non-sprayed sections. Environ Toxicol Chem 29:2191–2205

    Article  Google Scholar 

  • Brock TCM, Belgers JDM, Roessink I, Cuppen JGM, Maund SJ (2010) Macroinvertebrate responses to insecticide application between sprayed and adjacent non-sprayed ditch sections of different sizes. Environ Toxicol Chem 29:1994–2008

    CAS  Google Scholar 

  • Campbell PJ, Arnold DJS, Brock TCM, Grandy NJ, Heger W, Heimbach F, Maund SJ, Streloke M (1999) Guidance document on higher-tier aquatic risk assessment for pesticides (HARAP). SETAC-Europe, Brussels

    Google Scholar 

  • Caquet T, Lagadic L, Sheffield SR (2000) Mesocosms in ecotoxicology (1). Outdoor aquatic systems. Rev Environ Contam Toxicol 165:1–38

    CAS  Google Scholar 

  • Caquet T, Lagadic L, Monod G, Lacaze J-C, Couté A (2001) Variability of physico-chemical and biological parameters between replicated outdoor freshwater lentic mesocosms. Ecotoxicology 10:51–66

    Article  CAS  Google Scholar 

  • Caquet T, Hanson ML, Roucaute M, Graham DW, Lagadic L (2007) Influence of isolation on the recovery of pond mesocosms from the application of an insecticide. II. Benthic macroinvertebrate responses. Environ Toxicol Chem 26:1280–1290

    Article  CAS  Google Scholar 

  • Crossland NO, Mitchell GC, Dorn PB (1992) Use of outdoor artificial streams to determine threshold toxicity concentrations for a petrochemical effluent. Environ Toxicol Chem 11:49–59

    Article  CAS  Google Scholar 

  • De Jong FMW, Brock TCM, Foekema EM, Leeuwangh P (2008) Guidance for summarizing and evaluating aquatic micro- and mesocosm studies. http://library.wur.nl/ebooks/1872236.pdf

  • De Perre C, Crespo A, Abou Mrad N, Le Menach K, Jaber F, Parlanti E, Budzinski H (2009) Intérêt de la micro-extraction sur phase solide couplée à la chromatographie en phase gazeuse et à la spectrométrie de masse pour l’analyse des hydrocarbures aromatiques polycycliques dans les eaux. Spectra Anal 266:28–35

    Article  Google Scholar 

  • Development Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Efsa, PPR Panel (EFSA Panel on Plant Protection Products and their Residues) (2013) Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA J 11:3290

    Google Scholar 

  • Elliott JM (2002) Time-spent in the drift by downstream-dispersing invertebrates in the Lake District stream. Freshw Biol 47:97–106

    Article  Google Scholar 

  • Fleeger JW, Carman KR, Nisbet RM (2003) Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317:207–233

    Article  CAS  Google Scholar 

  • Floerl O, Peacock L, Seaward K, Inglis G (2010) Review of biosecurity and contaminant risks associated with in-water cleaning. The National Institute of Water and Atmospheric Research Limited, Commonwealth of Australia, p 136

    Google Scholar 

  • Froehner S, Machado KS, Dombroski LF, Nunes AC, Kishi RT, Bleninger T, Sanez J (2012) Natural biofilms in freshwater ecosystem: indicators of the presence of polycyclic aromatic hydrocarbons. Water Air Soil Pollut 223:3965–3973

    Article  CAS  Google Scholar 

  • Girling AE, Pascoe D, Janssen CR, Peithers A, Wenzel A, Schäfer H, Neumeier B, Mitchell GC, Taylor EJ, Maund SJ, Lay JP, Jüttner I, Crossland NO, Stephenson RR, Persoone G (2000) Development of methods for evaluating toxicity of freshwater ecosystems. Ecotoxicol Environ Saf 45:148–176

    Article  CAS  Google Scholar 

  • Hanson ML, Graham DW, Babin E, Azam D, Coutellec MA, Knapp CW, Lagadic L, Caquet T (2007) Influence of isolation on the recovery of pond mesocosms from the application of an insecticide. I. Study design and planktonic community responses. Environ Toxicol Chem 26:1265–1279

    Article  CAS  Google Scholar 

  • Hildrew AG, Hasham A (1985) The predatory Chironomidae of an iron-rich stream: feeding ecology and food web structure. Ecol Entomol 10:403–413

    Article  Google Scholar 

  • Hutchinson TH, Solbé J, Kloepper-Sams PJ (1998) Analysis of the ECETOC aquatic toxicity (EAC) database: comparative toxicity of chemical substances to different life-stages of aquatic organisms. Chemosphere 36:129–142

    Article  CAS  Google Scholar 

  • Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439

    Article  Google Scholar 

  • Kattwinkel M, Römbke J, Liess M (2012) Ecological recovery of populations of vulnerable species driving the risk assessment of pesticides. EFSA Supporting Publications 2012:EN-338. http://www.efsa.europa.eu/en/supporting/doc/338e.pdf

  • Knowles A (2008) Recent developments of safer formulations of agrochemicals. Environmentalist 28:35–44

    Article  Google Scholar 

  • Larson CA, Passy SI (2013) Rates of species accumulation and taxonomic diversification during phototrophic biofilm development are controlled by both nutrient supply and current velocity. Appl Environ Microbiol 79:2054–2060

    Article  CAS  Google Scholar 

  • Lauridsen RB, Friberg N (2005) Stream macroinvertebrate drift response to pulsed exposure of the synthetic pyrethroid lambda-vyhalothrin. Environ Toxicol 20:513–521

    Article  CAS  Google Scholar 

  • Lawrence JR, Kopf G, Headley JV, Neu TR (2001) Sorption and metabolism of selected herbicides in river biofilm communities. Can J Microbiol 47:634–641

    Article  CAS  Google Scholar 

  • Ledger ME, Harris RML, Milner AM, Armitage PD (2006) Disturbance, biological legacies and community development in stream mesocosms. Oecologia 148:682–691

    Article  Google Scholar 

  • Lewis M, Pryor R (2013) Toxicities of oils, dispersants, dispersed oils to algae and aquatic plants: review and database value to resource sustainability. Environ Pollut 180:345–367

    Article  CAS  Google Scholar 

  • Liess M, Beketov M (2011) Traits and stress: keys to identify community effects of low levels of toxicants in test systems. Ecotoxicology 20:1328–1340

    Article  CAS  Google Scholar 

  • Liess M, Brown C, Dohmen P, Duquesne S, Hart A, Heimbach F, Kreuger J, Lagadic L, Maund S, Reinert W, Streloke M, Tarazona JV (2005) Effects of pesticides in the field. SETAC Press, Brussels

    Google Scholar 

  • Lorenzen CJ (1967) Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol Oceanogr 12:343–346

    Article  CAS  Google Scholar 

  • Maltby L (1991) Pollution as a probe of life-history adaptation in Asellus aquaticus. Oikos 61:11–18

    Article  Google Scholar 

  • Milenkovski S, Bååth E, Lindgren P-E, Berglund O (2010) Toxicity of fungicides to natural bacterial communities in wetland water and sediment measured using leucine incorporation and potential denitrification. Ecotoxicology 19:285–294

    Article  CAS  Google Scholar 

  • Mohr S, Feibicke M, Ottenströer T, Meinecke R, Berghahn R, Schmidt R (2005) Enhanced experimental flexibility and control in ecotoxicological mesocosm experiments—a new outdoor and indoor pond and stream systems. Environ Sci Pollut Res 12:5–7

    Article  Google Scholar 

  • Mohr S, Feibicke M, Berghahn R, Schmiediche R, Schmidt R (2008) Response of plankton communities in freshwater pond and stream mesocosms to the herbicide metazachlor. Environ Pollut 152:530–542

    Article  CAS  Google Scholar 

  • Motoda S (1959) Devices of simple plankton apparatus. Mem Fac Fish Hokkaido Univ 7:73–94

    Google Scholar 

  • Murphy PM, Learner MA (1982) The life history and reproduction of Asellus aquaticus (Crustacea: Isopoda) in the River Ely, South Wales. Freshw Biol 12:435–444

    Article  Google Scholar 

  • OECD (2000) Guidance document on aquatic toxicity testing of difficult substances and mixtures. OECD Series on Testing and Assessment, No. 23, OECD, Paris

  • OECD (2002) Guidance document on the use of harmonised system for the classification of chemicals which are hazardous for the aquatic environment. OECD Series on Testing and Assessment, No 27, OECD, Paris

  • Pettigrove V, Hoffman A (2005) Effects of long-chain hydrocarbon-polluted sediment on freshwater macroinvertebrates. Environ Toxicol Chem 24:2500–2508

    Article  CAS  Google Scholar 

  • Singer G, Besemer K, Schmitt-Kopplin P, Hödl I, Battin TJ (2010) Physical heterogeneity increases biofilm resource use and its molecular diversity in stream mesocosms. PLoS ONE 5:e9988

    Article  Google Scholar 

  • Sourisseau S (2008) Simulation de la réponse d’hydrosytèmes continentaux (mares et rivières) à une perturbation de type toxique : effet du regroupement d’entités taxonomiques sur la pertinence de l’évaluation des risques écotoxicologiques. PhD Thesis, Agrocampus-Ouest, Doctoral College Vie-Agro-Santé, Rennes

  • Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2010) Invertébrés d’eau douce. Systématique, Biologie, Ecologie. CNRS Editions, Paris

    Google Scholar 

  • Us EPA (2001) The grouping of a series of dithiocarbamate pesticides based on a common mechanism of toxicity. Office of Pesticide Programs U.S. Environmental Protection Agency Washington D.C., USA, Health Effects Division, p 34

    Google Scholar 

  • van den Brink P (2006) Letter to the editor: response to recent criticism on aquatic (semi-) field experiments: Opportunities for new developments in ecological risk assessment of pesticides. Integr Environ Assess Manag 2:202–203

    Article  Google Scholar 

  • van den Brink PJ, Ter Braak CJF (1999) Principal response curves: analysis of time-dependent multivariate responses of a biological community to stress. Environ Toxicol Chem 18:138–148

    Article  Google Scholar 

  • van den Brink PJ, Van Wijngaarden RPA, Lucassen WGH, Brock TCM, Leeuwangh P (1996) Effects of the insecticide Dursban® 4E (active ingredient chlorpyrifos) in outdoor experimental ditches: II. Invertebrate community responses. Environ Toxicol Chem 15:1143–1153

    Article  Google Scholar 

  • van den Brink PJ, Alexander AC, Desrosiers M, Goedkoop W, Goethals PLM, Liess M, Dyer SD (2011) Traits-based approach in bioassessment and risk assessment: strengths, weakness, opportunities and threats. Integr Environ Assess Manag 7:198–208

    Article  Google Scholar 

  • Van Wijngaarden RPA, van den Brink PJ, Crum SJH, Oude Voshaar JH, Brock TCM, Leeuwangh P (1996) Effects of the insecticide Dursban® 4E (active ingredient chlorpyrifos) in outdoor experimental ditches: I. Comparison of short-term toxicity between the laboratory and the field. Environ Toxicol Chem 15:1133–1142

    Article  Google Scholar 

  • White EP, Ernest SKM, Kerkhoff AJ, Enquist BJ (2007) Relationships between body size and abundance in ecology. Trends Ecol Evol 22:323–330

    Article  Google Scholar 

  • Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D (2004) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115:329–341

    Article  Google Scholar 

  • Wong DCL, Toy RJ, Dorn PB (2004) A stream mesocosm study on the ecological effects of a C12–15 linear alcohol ethoxylate surfactant. Ecotoxicol Environ Saf 58:173–186

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Yannick Bayona PhD’s was funded by TOTAL S.A. The authors gratefully acknowledge contributions from Didier Azam, Maïra Coke, Antoine Gallard, Bernard Joseph, Cédric Lacoste, Alphonse Quemeneur at INRA U3E Experimental Unit and Jean-Marc Dalens, Véronique Loustalot, Nadine Medevielle and Erwan Peru at TOTAL S.A. Our thanks also go to Yolande Gautier, Carole Geret, Stéphane Harnois, Marie-Aude Liger and Ana Roucaute (INRA UMR985, Ecotoxicology and Quality of Aquatic Environments Research Group) for assistance during sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Bayona.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2048 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayona, Y., Roucaute, M., Cailleaud, K. et al. Effect of thiram and of a hydrocarbon mixture on freshwater macroinvertebrate communities in outdoor stream and pond mesocosms: I. Study design, chemicals fate and structural responses. Ecotoxicology 24, 1976–1995 (2015). https://doi.org/10.1007/s10646-015-1534-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1534-5

Keywords

Navigation