Skip to main content
Log in

Herbicide impact on the growth and reproduction of characteristic and rare arable weeds of winter cereal fields

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The decline of arable species characteristic of winter cereal fields has often been attributed to different factors related to agricultural intensification but most importantly to herbicide use. Herbicide phytotoxicity is most frequently assessed using short-term endpoints, primarily aboveground biomass. However, short-term sensitivity is usually not sufficient to detect actual effects because plants may or may not recover over time following sublethal herbicide exposures. Therefore, it is important to assess the long-term effects of herbicide applications. Annual species rely on renewable seed production to ensure their persistence; hence, assessment of herbicide sensitivity is more accurately estimated through effects on reproduction. Here we aim to assess the phytotoxicity of two commonly used herbicides: tribenuron and 2,4-D on eight plant species belonging to four families, each with one rare and one more common species. Specifically we examined the pattern of sensitivity using short-term and long-term endpoints (total aboveground biomass, total seed biomass and number of seeds) of these species; we determined the levels of and time to recovery in terms of stem length and fruit number, and assessed whether their rarity relates to their sensitivity to herbicide application. Our results suggest that although differences in herbicide sensitivity are not a direct cause of rarity for all species, it may be an important driver of declining arable plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baessler C, Klotz S (2006) Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric Ecosyst Environ 115:43–50. doi:10.1016/j.agee.2005.12.007

    Article  Google Scholar 

  • Boutin C, White AL, Carpenter D (2010) Measuring variability in phytotoxicity testing using crop and wild plant species. Environ Toxicol Chem 29:327–337. doi:10.1002/etc.30

    Article  CAS  Google Scholar 

  • Boutin C, Strandberg B, Carpenter D et al (2014) Herbicide impact on non-target plant reproduction: what are the toxicological and ecological implications? Environ Pollut 185:295–306

    Article  CAS  Google Scholar 

  • Breeze V, Thomas G, Butler R (1992) Use of a model and toxicity data to predict the risks to some wild plant species from drift of four herbicides. Ann Appl Biol 121:669–677. doi:10.1111/j.1744-7348.1992.tb03475.x

    Article  Google Scholar 

  • Carpenter D, Boutin C (2010) Sublethal effects of the herbicide glufosinate ammonium on crops and wild plants: short-term effects compared to vegetative recovery and plant reproduction. Ecotoxicology 19:1322–1336. doi:10.1007/s10646-010-0519-7

    Article  CAS  Google Scholar 

  • Carpenter D, Boutin C, Allison JE (2013) Effects of chlorimuron ethyl on terrestrial and wetland plants: levels of, and time to recovery following sublethal exposure. Environ Pollut 172:275–282. doi:10.1016/j.envpol.2012.09.007

    Article  CAS  Google Scholar 

  • Chamorro L, Romero A, Masalles RM, Sans FX (2007) Cambios en la diversidad de las comunidades arvenses en los cereales de secano en Cataluña. In: Mansilla J, Artigao A, Monreal J (eds) La malherbología en los nuevos Sist. Prod. Agrar. XI Congr. la SEMh. Albacete (Spain), pp 51–55. XI

  • Clark J, Ortego LS, Fairbrother A (2004) Sources of variability in plant toxicity testing. Chemosphere 57:1599–1612. doi:10.1016/j.chemosphere.2004.07.044

    Article  CAS  Google Scholar 

  • Crone EE, Marler M, Pearson DE (2009) Non-target effects of broadleaf herbicide on a native perennial forb: a demographic framework for assessing and minimizing impacts. J Appl Ecol 46:673–682. doi:10.1111/j.1365-2664.2007.0

    Article  Google Scholar 

  • Dalton RL, Boutin C (2010) Comparison of the effects of glyphosate and atrazine herbicides on nontarget plants grown singly and in microcosms. Environ Toxicol Chem 29:2304–2315. doi:10.1002/etc.277

    Article  CAS  Google Scholar 

  • De Snoo GR, van der Poll RJ (1999) Effect of herbicide drift on adjacent boundary vegetation. Agric Ecosyst Environ 73:1–6

    Article  Google Scholar 

  • EFSA Panel on Plant Protection Products and their Residues (EFSA PPR Panel) (2014) Scientific opinion addressing the state of the science on risk assessment of plant protection products for non-target terrestrial plants. EFSA J 12(7):3800. doi:10.2903/j.efsa.2014.3800

    Google Scholar 

  • Egan JF, Graham IM, Mortensen DA (2014) A comparison of the herbicide tolerances of rare and common plants in an agricultural landscape. Environ Toxicol Chem 33:696–702. doi:10.1002/etc.2491

    Article  CAS  Google Scholar 

  • Environment Canada (2005) Guidance document on application and interpretation of single-species tests in environmental toxicology. EPS 1/RM/46. Methods Dev Appl Sect Environ Technol Cent

  • Fletcher JS, Ffleeger TGP, Ratsch HCR, Hayes RH (1996) Potential impact of low levels of chlorsulfuron and other herbicides on growth and yield of nontarget plants. Environ Toxicol Chem 15:1189–1196

    Article  CAS  Google Scholar 

  • Follak S, Hurle K (2004) Recovery of non-target plants affected by airborne bromoxynil-octanoate and metribuzin. Weed Res 2003:142–147

    Article  Google Scholar 

  • Freemark KE, Boutin C (1995) Impacts of agricultural herbicide use on terrestrial wildlife in temperate landscapes: a review with special reference to North-America. Agric Ecosyst Environ 52:67–91. doi:10.1016/0167-8809(94)00534-L

    Article  Google Scholar 

  • Fried G, Petit S, Dessaint F, Reboud X (2009) Arable weed decline in Northern France: crop edges as refugia for weed conservation? Biol Conserv 142:238–243. doi:10.1016/j.biocon.2008.09.029ER

    Article  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester

    Google Scholar 

  • Hawes C, Haughton AJ, Osborne JL et al (2003) Responses of plants and invertebrate trophic groups to contrasting herbicide regimes in the farm scale evaluations of genetically modified herbicide-tolerant crops. Philos Trans R Soc Lond Ser B 358:1899–1913. doi:10.1098/rstb.2003.1406

    Article  CAS  Google Scholar 

  • Hole DG, Perkins AJ, Wilson JD et al (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130. doi:10.1016/j.biocon.2004.07.018ER

    Article  Google Scholar 

  • Hyvönen T, Salonen J (2002) Weed species diversity and community composition in cropping practices at two intensity levels—a six-year experiment. Plant Ecol 154:73–81

    Article  Google Scholar 

  • José-María L, Blanco-Moreno JM, Armengot L, Sans FX (2011) How does agricultural intensification modulate changes in plant community composition? Agric Ecosyst Environ 145:77–84. doi:10.1016/j.agee.2010.12.020

    Article  Google Scholar 

  • Larossa RA, Schloss JV (1984) The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. J Biol Chem 259:8753–8757

    CAS  Google Scholar 

  • Marrs RH, Frost AJ, Plant RA (1991) Effects of herbicide hpray drift on selected species of nature conservation interest: the effects of plant-age and surrounding vegetation structure. Environ Pollut 69:223–235. doi:10.1016/0269-7491(91)90146-N

    Article  CAS  Google Scholar 

  • Organisation for Economic Co-operation and Development (OECD) (2006) Terrestrial plants test: seedling emergence and seedling growth test (no. 2008) and vegetative vigour test (no. 227). OECD Guidelines for the Testing of Chemicals

  • Pinheiro J, Bates D, DebRoy S, et al (2013) nlme: linear and nonlinear mixed effects models

  • Qian H, Han X, Peng X et al (2014) The circadian clock gene regulatory module enantioselectively mediates imazethapyr-induced early flowering in Arabidopsis thaliana. J Plant Physiol 171:92–98. doi:10.1016/j.jplph.2013.11.011

    Article  CAS  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing

  • Riemens MM, Dueck T, Kempenaar C (2008) Predicting sublethal effects of herbicides on terrestrial non-crop plant species in the field from greenhouse data. Environ Pollut 155:141–149. doi:10.1016/j.envpol.2007.10.034

    Article  CAS  Google Scholar 

  • Riemens MM, Dueck T, Kempenaar C et al (2009) Sublethal effects of herbicides on the biomass and seed production of terrestrial non-crop plant species, influenced by environment, development stage and assessment date. Environ Pollut 157:2306–2313. doi:10.1016/j.envpol.2009.03.037

    Article  CAS  Google Scholar 

  • Romero A, Chamorro L, Sans FX (2008) Weed diversity in crop edges and inner fields of organic and conventional dryland winter cereal crops in NE Spain. Agric Ecosyst Environ 124:97–104. doi:10.1016/j.agee.2007.08.002ER

    Article  Google Scholar 

  • Rotchés-Ribalta R, Blanco-Moreno JM, Armengot L et al (2014) Both farming practices and landscape characteristics determine the diversity of characteristic and rare arable weeds in organically managed fields. Appl Veg Sci. doi:10.1111/avsc.12154

    Google Scholar 

  • Royo-Esnal A, Recasens J, Montull JM, et al (2011) Sensibilidad de especies mesícolas raras a tratamientos de herbicidas. Plantas invasoras, resistencias a herbicidas y detección de malas hierbas. XIII Congr. la Soc. Española Malherbología. La Laguna, Spain. pp 283–286

  • Schmitz J, Hahn M, Brühl CA (2014a) Agrochemicals in field margins—an experimental field study to assess the impacts of pesticides and fertilizers on a natural plant community. Agric Ecosyst Environ 193:60–69

    Article  CAS  Google Scholar 

  • Schmitz J, Schäfer K, Brühl CA (2014b) Agrochemicals in field margins—field evaluation of plant reproduction effects. Agric Ecosyst Environ 189:82–91

    Article  Google Scholar 

  • Storkey J, Meyer S, Still KS, Leuschner C (2012) The impact of agricultural intensification and land-use change on the European arable flora. Proc R Soc B 279:1421–1429. doi:10.1098/rspb.2011.1686

    Article  CAS  Google Scholar 

  • Strandberg B, Mathiassen SK, Bruus M, et al (2012) Effects of herbicides on non-target plants: how do effects in standard plant test relate to effects in natural habitats? Pestic. Res. No 137 Danish Ministry of the Environment EPA, p 114

  • Taberner A (2013) Herbicides i altres mètodes de control que es poden utilitzar en camps de cereals. In: Serv. Sanit. Veg. Unitat Bones Pràctiques Fitosanitàries i Cober. Veg. http://www20.gencat.cat/docs/DAR/AG_Agricultura/AG02_Sanitat_vegetal/AG02_05_Males_herbes/Documents/Fitxers_estatics/Herbicides_cereal.pdf

  • Tscharntke T, Klein AM, Kruess A et al (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874. doi:10.1111/j.1461-0248.2005.00782.xER

    Article  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2012) Ecological Effects Test Guidelines: Vegetative Vigor. p OCSPP 850.4150

  • Weed Science Society of America Summary of Herbicide Mechanism of Action According to the Weed Science Society of America (WSSA) (2014). http://wssa.net/wp-content/uploads/WSSA-Mechanism-of-Action. Accessed on 14 Aug 2014

Download references

Acknowledgments

We thank Jane Allison, Nayana Dilini de Silva and Jessica Parsons for their assistance in the greenhouse work. This research was funded by the Spanish government through a fellowship to the first author plus a grant during the stage in Canada and by the Projects CGL2009-13497-C02-01 and CGL2012-39442 from the Ministry of Economy and Competitiveness of the Spanish Government, and by Environment Canada.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roser Rotchés-Ribalta.

Electronic supplementary material

Additional supporting information may be found in the online version of this article. Below is the link to the electronic supplementary material.

10646_2015_1440_MOESM1_ESM.pdf

Annex 1. The non-linear regression logistic models used to calculate IC50, IC25 and IC10. Supplementary material 1 (PDF 13 kb)

10646_2015_1440_MOESM2_ESM.pdf

Annex 2. Summary of the IC50s of the aboveground biomass (Table A2.1) and of the number and biomass of seeds (Table A2.2). Supplementary material 2 (PDF 185 kb)

10646_2015_1440_MOESM3_ESM.pdf

Annex 3. Summary of the IC10s of the aboveground biomass (Table A3.1) and of the number and biomass of seeds (Table A3.2). Supplementary material 3 (PDF 187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotchés-Ribalta, R., Boutin, C., Blanco-Moreno, J.M. et al. Herbicide impact on the growth and reproduction of characteristic and rare arable weeds of winter cereal fields. Ecotoxicology 24, 991–1003 (2015). https://doi.org/10.1007/s10646-015-1440-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1440-x

Keywords

Navigation