Skip to main content

Advertisement

Log in

Gene cloning and expression analysis of AhR and CYP4 from Pinctada martensii after exposed to pyrene

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Pyrene, a typical polycyclic aromatic hydrocarbon, is a common pollutant in the marine environment. Polycyclic aromatic hydrocarbons initiate cellular detoxification in an exposed organism via the activation of the aryl hydrocarbon receptor (AhR). Subsequent metabolism of these xenobiotics is mainly by the cytochrome P450 enzymes of the phase I detoxification system. Full-length complementary DNA sequences from the pearl oyster Pinctada martensii (pm) encoding AhR and cytochrome P4 were cloned. The P. martensii AhR complementary DNA sequence constitutes an open reading frame that encodes for 848 amino acids. Sequence analysis indicated PmAhR showed high similarity with its homologues of other bivalve species. The cytochrome P(CYP)4 complementary DNA sequence of P. martensii constitutes an open reading frame that encodes for 489 amino acids. Quantitative real-time analysis detected both PmAhR and PmCYP4 messenger RNA expressions in the mantle, gill, hepatapancreas and adductor muscle of P. martensii exposed to pyrene. The highest transcript-band intensities of PmAhR and PmCYP4 were observed in the gill. Temporal expression of PmAhR and PmCYP4 messenger RNAs induction was observed in gills and increased between 3 and 5 days post exposure; then returned to control level. These results suggest that messenger RNAs of PmAhR and PmCYP4 in pearl oysters might be useful parameters for monitoring marine environment pyrene pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atchley WR, Fitch WM (1997) A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci USA 94:5172–5176

    Article  CAS  Google Scholar 

  • Bo J, Wu SJ, Li YH, Ren HL, Fan DQ, Chen FY, Wang KJ (2010) The effects of Benzo[a]Pyrene (BaP) exposure on the CYP1A1 mRNA and AhR2 mRNA expression of Red Seabream (Pagrus major). Acta Scientiarum Naturalium Universities Sunyatseni 49:93–97

    CAS  Google Scholar 

  • Boscolo Papo M, Maccatrozzo L, Bertotto D, Pascoli F, Negrato E, Poltronieri C, Binato G, Gallina A, Radaelli G (2014) Expression of CYP4 and GSTr genes in Venerupis philippinarum exposed to benzo(a)pyrene. Annals Anat 196:241–246

    Article  Google Scholar 

  • Butler RA, Kelley ML, Powell WH, Hahn ME, Van Beneden RJ (2001) An aryl hydrocarbon receptor (AHR) homologue from the soft-shell clam, Mya arenaria: evidence that invertebrate AHR homologues lack 2,3,7,8-tetrachlorodibenzo-p-dioxin and beta-naphthoflavone binding. Gene 278:223–234

    Article  CAS  Google Scholar 

  • Butler RA, Kelley ML, Olberding KE, Gardner GR, Van Beneden RJ (2004) Aryl hydrocarbon receptor (AhR)-independent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on softshell clam (Mya arenaria) reproductive tissue. Comp Biochem Physiol C 138:375–381

    Google Scholar 

  • Chaty S, Rodius F, Vasseur P (2004) A comparative study of the expression of CYP1A and CYP4 genes in aquatic invertebrate (freshwater mussel, Unio tumidus) and vertebrate (rainbow trout, Oncorhynchus mykiss). Aquat Toxicol 69:81–94

    Article  CAS  Google Scholar 

  • Danielson PB (2002) The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab 3:561–597

    Article  CAS  Google Scholar 

  • Denison MS, Heath-Pagliuso S (1998) The Ah receptor: a regulator of the biochemical and toxicological actions of structurally diverse chemicals. Bull Environ Contam Toxicol 61:557–568

    Article  CAS  Google Scholar 

  • Denison MS, Pandini A, Nagy SR, Baldwin EP, Bonati L (2002) Ligand binding and activation of the Ah receptor. Chem Biol Interact 141:3–24

    Article  CAS  Google Scholar 

  • Dolwick KM, Swanson HI, Bradfield CA (1993) In vitro analysis of Ah receptor domains involved in ligand-activated DNA recognition. Proc Natl Acad Sci 90:8566–8570

    Article  CAS  Google Scholar 

  • Dong JY, Wang SG, Shang Z (2009) Water environmental health risk assessment of polycyclic aromatic hydrocarbons in the Lanzhou reach of the Yellow River. J Agro-Environ Sci 28:1892–1897

    CAS  Google Scholar 

  • Feng CL, Lei BL, Wang ZJ (2009) Preliminary ecological risk assessment of polycyclic aromatic hydrocarbons in main rivers of China. China Environ Sci 29:583–588

    CAS  Google Scholar 

  • Fukunaga BN, Hankinson O (1996) Identification of a novel domain in the aryl hydrocarbon receptor required for DNA binding. J Biol Chem 271:3743–3749

    Article  CAS  Google Scholar 

  • Fukunaga BN, Probst MR, Reisz-Porszasz S, Hankinson O (1995) Identification of functional domains of the aryl hydrocarbon receptor. J Biol Chem 270:29270–29278

    Article  CAS  Google Scholar 

  • Goksøyr A, Förlin L (1992) The cytochrome P-450 system in fish, aquatic toxicology and environmental monitoring. Aquat Toxicol 22:287–311

    Article  Google Scholar 

  • Hahn ME (1998) The aryl hydrocarbon receptor: a comparative perspective. Comp Biochem Physiol C 121:23–53

    CAS  Google Scholar 

  • Hankinson O (1995) The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol 35:307–340

    Article  CAS  Google Scholar 

  • He H, Chen A, Davey R, Ivie G (2002) Molecular cloning and nucleotide sequence of a new P450 gene, CYP319A1, from the cattle tick, Boophilus microplus. Insect Biochem Mol Biol 32:303–309

    Article  CAS  Google Scholar 

  • Ikuta T, Eguchi H, Tachibana T, Yoneda Y, Kawajiri K (1998) Nuclear localization and export signals of the human aryl hydrocarbon receptor. J Biol Chem 273:2895–2904

    Article  CAS  Google Scholar 

  • Jain S, Dolwick KM, Schmidt JV, Bradfield CA (1994) Potent transactivation domains of the Ah receptor and the Ah receptor nuclear translocator map to their carboxyl termin. J Biol Chem 269:31518–31524

    CAS  Google Scholar 

  • Jørgensen A, Rasmussen LJ, Andersen O (2005) Characterisation of two novel CYP4 genes from the marine polychaete Nereis virens and their involvement in pyrene hydroxylase activity. Biochem Biophys Res Commun 336:890–897

    Article  Google Scholar 

  • Kann S, Huang M-y, Estes C, Reichard JF, Sartor MA, Xia Y, Puga A (2005) Arsenite-induced aryl hydrocarbon receptor nuclear translocation results in additive induction of phase I genes and synergistic induction of phase II genes. Mol Pharmacol 68:336–346

    CAS  Google Scholar 

  • Kazlauskas A, Poellinger L, Pongratz I (1999) Evidence that the co-chaperone p23 regulates ligand responsiveness of the dioxin (aryl hydrocarbon) receptor. J Biol Chem 274:13519–13524

    Article  CAS  Google Scholar 

  • Kim E-Y, Hahn ME, Iwata H, Tanabe S, Miyazaki N (2002) cDNA cloning of an aryl hydrocarbon receptor from Baikal seals (Phoca sibirica). Marine Environ Res 54:285–289

    Article  CAS  Google Scholar 

  • Kim E-Y, Iwata H, Suda T, Tanabe S, Amano M, Miyazaki N, Petrov EA (2005) Aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT) expression in Baikal seal (Pusa sibirica) and association with 2,3,7,8-TCDD toxic equivalents and CYP1 expression levels. Comp Biochem Physiol C 141:281–291

    Article  Google Scholar 

  • Liu N, Zhang L (2004) CYP4AB1, CYP4AB2, and Gp-9 gene overexpression associated with workers of the red imported fire ant, Solenopsis invicta Buren. Gene 327:81–87

    Article  CAS  Google Scholar 

  • Liu N, Pan L, Miao J, Xu C, Zhang L (2010) Molecular cloning and sequence analysis and the response of a aryl hydrocarbon receptor homologue gene in the clam Ruditapes philippinarum exposed to benzo(a)pyrene. Comp Biochem Physiol C 152:279–287

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Meyer BK, Pray-Grant MG, Vanden Heuvel JP, Perdew GH (1998) Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. Mol Cell Bio 18:978–988

    Article  CAS  Google Scholar 

  • Miao J, Pan L, Liu N, Xu C, Zhang L (2011) Molecular cloning of CYP4 and GSTpi homologues in the scallop Chlamys farreri and its expression in response to benzo[a]pyrene exposure. Marine Genomics 4:99–108

    Article  Google Scholar 

  • Miller HC, Mills GN, Bembo D, Macdonald JA, Evans CW (1999) Induction of cytochrome P4501A (CYP1A) in Trematomus bernacchii as an indicator of environmental pollution in Antarctica: assessment by quantitative RT-PCR. Aquat Toxicol 44:183–193

    Article  CAS  Google Scholar 

  • Nelson DR (1998) Metazoan cytochrome P450 evolution. Comp Biochem Physiol C 121:15–22

    CAS  Google Scholar 

  • Ohi H, Fujita Y, Miyao M, Saguchi K-i, Murayama N, Higuchi S (2003) Molecular cloning and expression analysis of the aryl hydrocarbon receptor of Xenopus laevis. Biochem Biophys Res Commun 307:595–599

    Article  CAS  Google Scholar 

  • Pan L, Liu N, Xu C, Miao J (2011) Identification of a novel P450 gene belonging to the CYP4 family in the clam Ruditapes philippinarum, and analysis of basal- and benzo(a)pyrene-induced mRNA expression levels in selected tissues. Environ Toxicol Pharmacol 32:390–398

    Article  CAS  Google Scholar 

  • Reddy JK, Rao MS (1986) Peroxisome proliterators and cancer-mechanisms and implications. Trends Pharmacol Sci 7:438–443

    Article  CAS  Google Scholar 

  • Rewitz K, Kjellerup C, Jørgensen A, Petersen C, Andersen O (2004) Identification of two Nereis virens (Annelida: Polychaeta) cytochromes P450 and induction by xenobiotics. Comp Biochem Physiol C 138:89–96

    Article  CAS  Google Scholar 

  • Rewitz KF, Styrishave B, Løbner-Olesen A, Andersen O (2006) Marine invertebrate cytochrome P450: emerging insights from vertebrate and insects analogies. Comp Biochem Physiol C 143:363–381

    Google Scholar 

  • Schmidt JV, Bradfield CA (1996) Ah receptor signaling pathways. Annu Rev Cell Dev Biol 12:55–89

    Article  CAS  Google Scholar 

  • Scott JG (1999) Cytochromes P450 and insecticide resistance. Insect Biochem Mol Biol 29:757–777

    Article  CAS  Google Scholar 

  • Scott JA, Collins FH, Feyereisen R (1994) Diversty of cytochrome P450 genes in the mosquito, Anopheles albimanus. Biochem Biophys Res Commun 205:1452–1459

    Article  CAS  Google Scholar 

  • Simpson AE (1997) The cytochrome P450 4 (CYP4) family. Gen Pharmacol 28:351–359

    Article  CAS  Google Scholar 

  • Snyder MJ (1998) Cytochrome P450 enzymes belonging to the CYP4 family from marine invertebrates. Biochem Biophys Res Commun 249:187–190

    Article  CAS  Google Scholar 

  • Swanson HI, Yang J (1996) Mapping the protein/DNA contact sites of the Ah receptor and Ah receptor nuclear translocator. J Biol Chem 271:31657–31665

    Article  CAS  Google Scholar 

  • Taysse L, Chambras C, Marionnet D, Bosgiraud C, Deschaux P (1998) Basal level and induction of cytochrome P450, EROD, UDPGT, and GST activities in carp (Cyprinus carpio) immune organs (spleen and head kidney). Bull Environ Contam Toxicol 60:300–305

    Article  CAS  Google Scholar 

  • Tian S, Pan L, Zhang H (2014) Identification of a CYP3A-like gene and CYPs mRNA expression modulation following exposure to benzo[a]pyrene in the bivalve mollusk Chlamys farreri. Marine Environ Res 94:7–15

    Article  CAS  Google Scholar 

  • Vrzal R, Stejskalova L, Monostory K, Maurel P, Bachleda P, Pavek P, Dvorak Z (2009) Dexamethasone controls aryl hydrocarbon receptor (AhR)-mediated CYP1A1 and CYP1A2 expression and activity in primary cultures of human hepatocytes. Chem Biol Interact 179:288–296

    Article  CAS  Google Scholar 

  • Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1:1–9

    Article  Google Scholar 

  • Whitelaw ML, Göttlicher M, Gustafsson J, Poellinger L (1993) Definition of a novel ligand binding domain of a nuclear bHLH receptor: co-localization of ligand and hsp90 binding activities within the regulable inactivation domain of the dioxin receptor. EMBO J 12:4169–4179

    CAS  Google Scholar 

  • Wu YY, Wu QH, Luo H, Zhang HJ, Wu YH, Zhang RZ, Xu ZC (2013) Ecological risk assessment for polycyclic aromatic hydrocarbons in river sediments. Acta Scientiae Circumstantiae 33:544–556

    CAS  Google Scholar 

  • Yang P, Tanaka H, Kuwano E, Suzuki K (2008) A novel cytochrome P450 gene (CYP4G25) of the silkmoth Antheraea yamamai: cloning and expression pattern in pharate first instar larvae in relation to diapause. J Insect Physiol 54:636–643

    Article  CAS  Google Scholar 

  • Zhou C, Li C, Zhang W, Jia X (2010) CYP4 gene cloning and expression level analysis of Perna viridis. J Trop Oceanogr 29:82–88

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Sciences Foundation of China (31160126). The authors would like to acknowledge all other members at Dr. Xiaoping Diao Laboratory for their help with sampling and taking care of the pearl oysters.

Conflict of interest

The authors declare that there are no conflicts of interest for their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Diao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Liao, C., Zhou, H. et al. Gene cloning and expression analysis of AhR and CYP4 from Pinctada martensii after exposed to pyrene. Ecotoxicology 24, 1574–1582 (2015). https://doi.org/10.1007/s10646-015-1424-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1424-x

Keywords

Navigation