Skip to main content
Log in

Relationship between biomarkers and endocrine-disrupting compounds in wild Girardnichthys viviparus from two lakes with different degrees of pollution

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Despite great efforts worldwide to evaluate the effects of endocrine-disrupting compounds (EDCs) in fish, there is little information available about the interactions of EDCs with the disruption of the sexual endocrine axis in fish species with matrotrophic viviparity and intraluminal gestation. To understand these interactions, six sampling campaigns were performed within a period of 1 year in two lakes with different degrees of pollution. A battery of biomarkers of the oestrogenic response was assessed in the liver [vitellogenin, CYP 1A1, epoxide hydrolase activity, and metallothioneins (MT)] and MT in the head of Girardinichthys viviparus. Linear correlation analysis and canonical correspondence analysis were performed to explore the relationship between the oestrogenic response with EDCs and with metals. The biomarker responses were assessed using the water content of EDCs (oestrone, 17-β-oestradiol, oestriol, 17-α-ethinyl oestradiol, total phenols, bisphenol A, nonyl phenol, octyl phenol), as well as the PAHs indene[1,2,3-c,d]pyrene, naphthalene, pyrene, benzo[a]anthracene, benzo[k]fluoranthene and benzo[a]pyrene) and metals (Cu, Fe, Mn, Pb and Zn). Greater disruption of the sexual endocrine axis occurred in fish of both sexes inhabiting the polluted lake whose effects were apparently influenced by CYP 1A1 activity and by 17-α-ethinyl oestradiol. In addition, non-estrogenic mechanisms in the hypothalamus and pituitary glands in male fish were observed, elicited by endogenous levels and the water concentration of Pb. In contrast, in females from the less polluted lake, VTG induction was related to exogenous oestrogens. The disruption of the hypothalamic–pituitary–gonadal axis is a complex process influenced by both endogenous and exogenous factors and contributes to male feminisation by exposure to EDCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerni HR, Kobler B, Rutishauser BV, Wettstein FE, Fischer R, Giger W, Hungerbühler A, Marazuela MD, Peter A, Schönenberger R, Vögeli AC, Suter MJ, Eggen RI (2004) Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents. Anal Bioanal Chem 378(3):688–696

    CAS  Google Scholar 

  • Ahel M, Giger W, Koch M (1994) Behavior of alkylphenol polyethoxylate surfactants in the aquatic environment-II. Occurrence and transformation in sewage treatment. Water Res 28(5):1131–1142

    CAS  Google Scholar 

  • Al-Ansari AM, Saleem A, Kimpe LE, Sherry JP, McMaster ME, Trudeau VL, Blais JM (2010) Bioaccumulation of the pharmaceutical 17alpha-ethynil estradiol in shorthead redhorse suckers (Moxostoma macrolepidotum) from the St. Clair River, Canada. Environ Pollut 158(8):2566–2571

    CAS  Google Scholar 

  • Alvarez del Villar J, Navarro L (1957) Los peces del valle de México. Comisión para el fomento de la psicultura rural. Secretaria de Marina, p. 62

  • APHA (American Public Health Association, American Water Works Association, Water Environment Federation) (1998) Metals by flame atomic absorption. In: Clesceri LS, Greenberg AE, Eaton AD (eds) Standard methods for the examination of water and wastewater, 20th edn. United Book Press, Baltimore, p 3.17

    Google Scholar 

  • Aris AZ, Shamsuddin AS, Praveena SM (2014) Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. Environ Int C 69:104–119

    CAS  Google Scholar 

  • Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, Skutkova H, Provaznik I, Hubalek J, Kizek R (2012) Mammalian metallothioneins: properties and functions. Metallomics 4(8):739–750

    CAS  Google Scholar 

  • Banks SD, Thomas P, Baer KN (1999) Seasonal variations in hepatic and ovarian zinc concentrations during the annual reproductive cycle in female channel catfish (Ictalurus punctatus). Comp Biochem Physiol C 124:65–72

    CAS  Google Scholar 

  • Bennie DT, Sullivan CA, Lee H-B, Peart TE, Maguire RJ (1997) Occurrence of alkylphenols and alkylphenol mono- and diethoxylates in natural waters of the Laurentian Great Lakes basin and the upper St. Lawrence River. Sci Total Environ 193:263–275

    CAS  Google Scholar 

  • Bolz U, Hagenmaier H, Korner W (2001) Phenolic xenoestrogens in surface water, sediments, and sewage sludge from Baden-Wurttemberg, South-West Germany. Environ Pollut 115:291–301

    CAS  Google Scholar 

  • Booc F, Thornton C, Lister A, MacLatchy D, Willett KL (2014) Benzo[a]pyrene effects on reproductive endpoints in Fundulus heteroclitus. Toxicol Sci 140(1):73–82

    CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Chen F, Ying GG, Yang JF, Zhao JL, Wang L (2010) Rapid resolution liquid chromatography-tandem mass spectrometry method for the determination of endocrine disrupting chemicals (EDCs), pharmaceuticals and personal care products (PPCPs) in wastewater irrigated soils. J Environ Sci Health Part B 45:682e693

    Google Scholar 

  • Colborn T, vom Saal FS, Soto AM (1994) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Impact Assess Rev 14(5–6):469–489

    Google Scholar 

  • Crain DA, Eriksen M, Iguchi T, Jobling S, Laufer H, LeBlanc GA, Guillette LJ Jr (2007) An ecological assessment of bisphenol-A: evidence from comparative biology. Reprod Toxicol 24:225–239

    CAS  Google Scholar 

  • Crump KL, Trudeau VL (2009) Mercury-induced reproductive impairment in fish. Environ Toxicol Chem 28(5):895–907

    CAS  Google Scholar 

  • Darbre PD (2006) Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J Appl Toxicol 26(3):191–197

    CAS  Google Scholar 

  • David ML, Gnudi F (1999) Phenolic compounds in surface water. Water Res 33:3213–3219

    Google Scholar 

  • de Azevedo DA, Lacorte S, Viana P, Barcelo D (2001) Occurrence of nonylphenol and bisphenol-A in surface waters from Portugal. J Braz Chem Soc 12:532–537

    CAS  Google Scholar 

  • Dzul-Caamal R, Olivares-Rubio HF, Medina-Segura CG, Vega-López A (2013) Endangered Mexican fish under special protection: Diagnosis of habitat fragmentation, protection, and future—a review. In: Lucas-Borja ME (ed) Endangered species: habitat, protection and ecological significance. Nova Science Publishers, New York, pp 109–130

    Google Scholar 

  • Fenet H, Gomez E, Pillon A, Rosain D, Nicolas JC, Casellas C, Balaguer P (2003) Estrogenic activity in water and sediments of French river: contribution of alkylphenols. Arch Environ Contam Toxicol 44:1–6

    CAS  Google Scholar 

  • Flick RW, Bencic DC, See MJ, Biales AD (2014) Sensitivity of the vitellogenin assay to diagnose exposure of fathead minnows to 17α-ethynylestradiol. Aquat Toxicol 152:353–360

    CAS  Google Scholar 

  • Focardi S, Corsi I, Mazzuoli S, Vignoli L, Loiselle SA, Focardi S (2006) Integrating remote sensing approach with pollution monitoring tools for aquatic ecosystem risk assessment and management: a case study of Lake Victoria (Uganda). Environ Monit Assess 122(1–3):275–287

    CAS  Google Scholar 

  • Fretland AJ, Omiecinski CJ (2000) Epoxide hydrolases: biochemistry and molecular biology. Chem Biol Interact 129:41–59

    CAS  Google Scholar 

  • Fries E, Püttmann W (2003) Occurrence and behaviour of 4-nonylphenol in river water of Germany. J Environ Monit 4:598–603

    Google Scholar 

  • Goksøyr A, Förlin L (1992) The cytochrome P450 system in fish, aquatic toxicology and environmental monitoring. Aquat Toxicol 22:287–312

    Google Scholar 

  • Han J, Wang Q, Wang X, Li Y, Wen S, Liu S, Ying G, Guo Y, Zhou B (2014) The synthetic progestin megestrol acetate adversely affects zebrafish reproduction. Aquat Toxicol 150:66–72. doi:10.1016/j.aquatox.2014.02.020

    CAS  Google Scholar 

  • Hanselman TA, Graetz DA, Wilkie AC (2003) Manure-borne estrogens as potential environmental contaminants: a review. Environ Sci Technol 37:5471–5478

    CAS  Google Scholar 

  • Haux C, Björnsson BT, Förlin L, Larsson Å, Deftos LJ (1988) Influence of cadmium exposure on plasma calcium, vitellogenin and calcitonin in vitelogenic rainbow trout. Mar Environ Res 24:199–210

    CAS  Google Scholar 

  • Hinfray N, Palluel O, Piccini B, Sanchez W, Aït-Aïssa S, Noury P, Gomez E, Geraudie P, Minier C, Brion F, Porcher JM (2010) Endocrine disruption in wild populations of chub (Leuciscus cephalus) in contaminated French streams. Sci Total Environ 408(9):2146–2154

    CAS  Google Scholar 

  • Hohenblum P, Gans O, Moche W, Scharf S, Lorbeer G (2004) Monitoring of selected estrogenic hormones and industrial chemicals in groundwaters and surface waters in Austria. Sci Total Environ 333:185–193

    CAS  Google Scholar 

  • Howdeshell KL, Peterman PH, Judy BM, Taylor JA, Orazio CE, Ruhlen RL, Vom Saal FS, Welshons WV (2003) Bisphenol A is released from used polycarbonate animal cages into water at room temperature. Environ Health Perspect 111:1180–1187

    CAS  Google Scholar 

  • Huang GY, Ying GG, Liang YQ, Liu SS, Liu YS (2014) Expression patterns of metallothionein, cytochrome P450 1A and vitellogenin genes in western mosquitofish (Gambusia affinis) in response to heavy metals. Ecotoxicol Environ Saf 105:97–102

    CAS  Google Scholar 

  • Humble JL, Hands E, Saaristo M, Lindström K, Lehtonen KK, Diaz de Cerio O, Cancio I, Wilson G, Craft JA (2013) Characterisation of genes transcriptionally upregulated in the liver of sand goby (Pomatoschistus minutus) by 17α-ethinyloestradiol: identification of distinct vitellogenin and zona radiata protein transcripts. Chemosphere 90(11):2722–2729

    CAS  Google Scholar 

  • Humble JL, Saaristo M, Lindström K, Lehtonen KK, Craft JA (2014) Effects of 17α-ethinyl estradiol exposure on estrogen receptors α and β and vitellogenins A, B and C mRNA expression in the liver of sand goby (Pomatoschistus minutus). Mar Environ Res 96:12–18

    CAS  Google Scholar 

  • Isobe T, Nishiyama H, Nakashima A, Takada H (2001) Distribution and behavior of nonylphenol, octylphenol, and nonylphenol monoethoxylate in Tokyo metropolitan area: their association with aquatic particles and sedimentary distributions. Environ Sci Technol 35(6):1041–1049

    CAS  Google Scholar 

  • Jurgella GF, Marwah A, Malison JA, Peterson R, Barry TP (2006) Effects of xenobiotics and steroids on renal and hepatic estrogen metabolism in lake trout. Gen Comp Endocrinol 148:273–281

    CAS  Google Scholar 

  • Kang JH, Kondo F (2006) Bisphenol A in the surface water and freshwater snail collected from rivers around a secure landfill. Bull Environ Contam Toxicol 76:113–118

    CAS  Google Scholar 

  • Kang IJ, Yokota H, Oshima Y, Tsuruda Y, Oe T, Imada N, Tadokoro H, Honjo T (2002) Effects of bisphenol a on the reproduction of Japanese medaka (Oryzias latipes). Environ Toxicol Chem 21(11):2394–2400

    CAS  Google Scholar 

  • Khan IA, Thomas P (2000) Lead and Aroclor 1254 disrupt reproductive neuroendocrine function in Atlantic croaker. Mar Environ Res 50(1–5):119–123

    CAS  Google Scholar 

  • Kortmann RW, Rich PH (1994) Lake ecosystem energetics: the missing management link. Lake Res Manag 82:77–99

    Google Scholar 

  • Kroupova HK, Trubiroha A, Lorenz C, Contardo-Jara V, Lutz I, Grabic R, Kocour M, Kloas W (2014) The progestin levonorgestrel disrupts gonadotropin expression and sex steroid levels in pubertal roach (Rutilus rutilus). Aquat Toxicol 154:154–162

    CAS  Google Scholar 

  • Labadie P, Budzinski H (2005) Determination of steroidal hormone profiles along the Jalle d’Eysines River (near Bordeaux, France). Environ Sci Technol 39:5113–5120

    CAS  Google Scholar 

  • Lange A, Katsu Y, Miyagawa S, Ogino Y, Urushitani H, Kobayashi T, Hirai T, Shears JA, Nagae M, Yamamoto J, Ohnishi Y, Oka T, Tatarazako N, Ohta Y, Tyler CR, Iguchi T (2012) Comparative responsiveness to natural and synthetic estrogens of fish species commonly used in the laboratory and field monitoring. Aquat Toxicol 109:250–258

    CAS  Google Scholar 

  • Larsen BK, Bjornstad A, Sundt RC, Taban IC, Pampanin DM, Anderson OK (2006) Comparison of protein expression in plasma from nonylphenol and bisphenol A-exposed Atlantic cod (Gadus morhua) and turbot turbot (Scophthalmus maximus) by use of SELDI-TOF. Aquat Toxicol 78S:S25–S33

    Google Scholar 

  • Lei B, Wen Y, Wang X, Zha J, Li W, Wang Z, Sun Y, Kang J, Wang Y (2013) Effects of estrone on the early life stages and expression of vitellogenin and estrogen receptor genes of Japanese medaka (Oryzias latipes). Chemosphere 93(6):1104–1110

    CAS  Google Scholar 

  • Levy G, Lutz I, Kruger A, Kloas W (2004) Bisphenol A induces feminization in Xenopus laevis tadpoles. Environ Res 94:102–111

    CAS  Google Scholar 

  • Li J, Cheng H, Zhang G, Qi S, Li X (2009) Polycyclic aromatic hydrocarbon (PAH) deposition to and exchange at the air-water interface of Luhu, an urban lake in Guangzhou, China. Environ Pollut 157:273–279

    CAS  Google Scholar 

  • Lindholst C, Pedersen KL, Pedersen SN (2000) Estrogenic response of bisphenol A in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 48:87–94

    CAS  Google Scholar 

  • Marr LC, Grogan LA, Wöhrnschimmel H, Molina LT, Molina MJ, Smith TJ, Garshick E (2004) Vehicle traffic as a source of particulate polycyclic aromatic hydrocarbon exposure in the Mexico City metropolitan area. Environ Sci Technol 38(9):2584–2592

    CAS  Google Scholar 

  • Martin MB, Reiter R, Pham T, Avellanet YR, Camara J, Lahm M, Pentecost E, Pratap K, Gilmore BA, Divekar S, Dagata RS, Bull JL, Stoica A (2003) Estrogen-like activity of metals in MCF-7 breast cancer cells. Endocrinology 6:2425–2436

    Google Scholar 

  • Martín-Díaz ML, Sales D, DelValls A (2008) Toxicokinetic approach for the assessment of endocrine disruption effects of contaminated dredged material using female Carcinus maenas. Ecotoxicology 17(6):495–503

    Google Scholar 

  • Menuet A, Pellegrini E, Brion F, Gueguen MM, Anglade I, Pakdel F, Kah O (2005) Expression and estrogen-dependent regulation of the zebrafish brain aromatase gene. J Comp Neurol 485(4):304–320

    CAS  Google Scholar 

  • Naderi M, Zargham D, Asadi A, Bashti T, Kamayi K (2013) Short-term responses of selected endocrine parameters in juvenile rainbow trout (Oncorhynchus mykiss) exposed to 4-nonylphenol. Toxicol Ind Health. doi:10.1177/0748233713491806

  • Nicolas JM (1998) Vitellogenesis in fish and the effects of polycyclic aromatic hydrocarbon contaminants. Aquat Toxicol 45:77–90

    Google Scholar 

  • Oberholster PJ, Cheng PH, Botha AM, Genthe B (2014) The potential of selected macroalgal species for treatment of AMD at different pH ranges in temperate regions. Water Res 60:82–92

    CAS  Google Scholar 

  • Olivares-Rubio HF, Martínez-Torres ML, Domínguez-López ML, García-Latorre E, Vega-López A (2013) Pro-oxidant and antioxidant responses in the liver and kidney of wild Goodea gracilis and their relation with halomethanes bioactivation. Fish Physiol Biochem 39(6):1603–1617

    CAS  Google Scholar 

  • Opperhuizen A, Sijm DTHM (1990) Bioconcentration and bioaccumulation of polychlorinated dibenzo-p-dioxins and dibenzofurans in fish. Environ Toxicol Chem 9(2):175–186

    CAS  Google Scholar 

  • Ortiz R, Veja S, Gutiérrez R, Gibson R, Schettino B, de Ramirez ML (2012) Presence of polycyclic aromatic hydrocarbons (PAHs) in top soils from rural terrains in Mexico City. Bull Environ Contam Toxicol 88(3):428–432

    CAS  Google Scholar 

  • Pal A, Gin KY, Lin AY, Reinhard M (2010) Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ 408:6062–6069

    CAS  Google Scholar 

  • Palacios O, Atrian S, Capdevila M (2011) Zn- and Cu-thioneins: a functional classification for metallothioneins? J Biol Inorg Chem 7:991–1009

    Google Scholar 

  • Parrot JL, Chong-Kit R, Rokosh R (1999) EROD induction in fish: a tool to measure environmental exposure. In: Rao SS (ed) Impact assessment of hazardous aquatic contaminants, concepts and approaches. Lewis Publishers, Boca Raton, pp 99–123

    Google Scholar 

  • Pedersen KL, Pedersen SN, Højrup P, Andersen JS, Roepstorff P, Knudsen J, Depledge MH (1994) Purification and characterization of a cadmium-induced metallothionein from the shore crab Carcinus maenas (L.). Biochem J 297:609–614

    CAS  Google Scholar 

  • Petersen K, Tollefsen KE (2012) Combined effects of oestrogen receptor antagonists on in vitro vitellogenesis. Aquat Toxicol 112–113:46–53

    Google Scholar 

  • Popek W, Dietrich G, Glogowski J, Demska-Zakeś K, Drag-Kozak E, Sionkowski J, Łuszczek-Trojan E, Epler P, Demianowicz W, Sarosiek B, Kowalski R, Jankun M, Zakeś Z, Król J, Czerniak S, Szczepkowski M (2006) Influence of heavy metals and 4-nonylphenol on reproductive function in fish. Reprod Biol 6(Suppl 1):175–188

    Google Scholar 

  • Regaib Oğuz A, Unal G (2011) The effects of 17alpha-ethynylestradiol, 4-nonylphenol and phenol red on vitellogenin synthesis in juvenile Chalcalburnus tarichi primary hepatocyte culture. Toxicol Ind Health 27(4):379–384

    Google Scholar 

  • SAGARPA (2001) Norma Oficial Mexicana NOM-062-ZOO-1999 Especificaciones técnicas para la producción, cuidado y el uso de animales de laboratorio. Diario Oficial de la Federación, Segunda Sección, México, pp. 1-57

  • Samsudin MS, Juahir H, Zain SM, Adnan NH (2011) Surface river water quality interpretation using environmetric techniques: case study at Perlis River Basin. Malaysia. Int J Environ Prot 1(5):1e8

    Google Scholar 

  • Sankavaram K, Freake HC (2012) The effects of transformation and ZnT-1 silencing on zinc homeostasis in cultured cells. J Nutr Biochem 23(6):629–634

    CAS  Google Scholar 

  • Shanle EK, Xu W (2011) Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem Res Toxicol 24(1):6–19

    CAS  Google Scholar 

  • Solé M, Antó M, Baena M, Carrasson M, Cartes JE, Maynou F (2010) Hepatic biomarkers of xenobiotic metabolism in eighteen marine fish from NW Mediterranean shelf and slope waters in relation to some of their biological and ecological variables. Mar Environ Res 70(2):181–188

    Google Scholar 

  • Song WT, Wang ZJ, Liu HC (2014) Effects of individual and binary mixtures of estrogens on male goldfish (Carassius auratus). Fish Physiol Biochem 40(6):1927–1935

    CAS  Google Scholar 

  • Souissi Y, Bourcier S, Bouchonnet S, Genty C, Sablier M (2012) Estrone direct photolysis: by-product identification using LC-Q-TOF. Chemosphere 87:185–193

    CAS  Google Scholar 

  • Sumpter JR, Johnson C (2005) Lessons from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment. Environ Sci Technol 39:4321–4332

    CAS  Google Scholar 

  • Sun L, Lin X, Jin R, Peng T, Peng Z, Fu Z (2014) Toxic effects of bisphenol A on early life stages of Japanese medaka (Oryzias latipes). Bull Environ Contam Toxicol 93(2):222–227

    CAS  Google Scholar 

  • Tabata A, Watanabe N, Yamamoto I, Ohnishi Y, Itoh M, Kamei T, Magara Y, Terao Y (2004) The effect of bisphenol A and chlorinated derivatives of bisphenol A on the level of serum vitellogenin in Japanese medaka (Oryzias latipes). Water Sci Technol 50(5):125–132

    CAS  Google Scholar 

  • Takeda A, Nakamura M, Fujii H, Tamano H (2013) Synaptic Zn(2+) homeostasis and its significance. Metallomics 5(5):417–423

    CAS  Google Scholar 

  • Tang JY, Busetti F, Charrois JW, Escher B (2014) Which chemicals drive biological effects in wastewater and recycled water? Water Res 60:289–299

    CAS  Google Scholar 

  • Tata JR, Smith DF (1979) Vitellogenesis: a versatile model for hormonal regulation of gene expression. Recent Prog Horm Res 35:47–95

    CAS  Google Scholar 

  • ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57(3):255–289

    Google Scholar 

  • Thomaeus A, Naworyta A, Mowbray SL, Widersten M (2008) Removal of distal protein-water hydrogen bonds in a plant epoxide hydrolase increases catalytic turnover but decreases thermostability. Protein Sci 7:1275–1284

    Google Scholar 

  • Thompson ED, Burwinkel KE, Chava AK, Notch EG, Mayer GD (2010) Activity of Phase I and Phase II enzymes of the benzo[a]pyrene transformation pathway in zebrafish (Danio rerio) following waterborne exposure to arsenite. Comp Biochem Physiol C 152:371–378

    Google Scholar 

  • Thompson ED, Mayer GD, Glover CN, Capo T, Walsh PJ, Hogstrand C (2012) Zinc hyperaccumulation in squirrelfish (Holocentrus adscenscionis) and its role in embryo viability. PLoS One 7(10):e46127

    CAS  Google Scholar 

  • Tollefsen KE (2002) Interaction of estrogen mimics, singly and in combination, with plasma sex steroid-binding proteins in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 56:215–225

    CAS  Google Scholar 

  • US EPA (Environmental Protection Agency) (2005) Cross-species mode of action information assessment: a case study of bisphenol A. National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC 20460. EPA/600/R-05/044F

  • US EPA (Environmental Protection Agency) (2010) Nonylphenol (NP) and Nonylphenol Ethoxylates (NPEs) Action Plan [RIN 2070-ZA09]

  • Van den Belt K, Verheyen R, Witters H (2003) Comparison of vitellogenin responses in zebrafish and rainbow trout following exposure to environmental estrogens. Ecotoxicol Environ Saf 56(2):271–281

    Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149

    Google Scholar 

  • Vega-López A, Martínez-Tabche L, Domínguez-López ML, García-Latorre E, Ramón-Gallegos E, García-Gasca A (2006) Vitellogenin induction in the endangered goodeid fish Girardinichthys viviparus: vitellogenin characterization and estrogenic effects of polychlorinated biphenyls. Comp Biochem Physiol C 142(3–4):356–364

    Google Scholar 

  • Vega-López A, Ortiz-Ordóñez E, Uría-Galicia E, Mendoza-Santana EL, Hernández-Cornejo R, Atondo-Mexia R, García-Gasca A, García-Latorre E, Domínguez-López ML (2007a) The role of vitellogenin during gestation of Girardinichthys viviparus and Ameca splendens; two goodeid fish with matrotrophic viviparity. Comp Biochem Physiol A 147:731–742

    Google Scholar 

  • Vega-López A, Martínez-Tabche L, Martínez MG (2007b) Toxic effects of waterborne polychlorinated biphenyls and sex differences in an endangered goodeid fish (Girardinichthys viviparus). Environ Int 33:540–545

    Google Scholar 

  • Vega-López A, Jiménez-Orozco FA, Ramón-Gallegos E, García-Latorre E, Domínguez-López ML (2008) Estrogenic effects of polychlorinated biphenyls and relation to cytochrome P4501A activity in the endangered goodeid fish Ameca splendens. Environ Toxicol Chem 27(4):963–969

    Google Scholar 

  • Vega-López A, Ayala-López G, Posadas-Espadas BP, Olivares-Rubio HF, Dzul-Caamal R (2013) Relations of oxidative stress in freshwater phytoplankton with heavy metals and polycyclic aromatic hydrocarbons. Comp Biochem Physiol A 165(4):498–507

    Google Scholar 

  • Vetillard A, Bailhache T (2005) Cadmium: an endocrine disrupter that affects gene expression in the liver and brain of juvenile rainbow trout. Biol Reprod 72(1):119–126

    CAS  Google Scholar 

  • Wang L, Cai YQ, He B, Yuan CG, Shen DZ, Shao J, Jiang GB (2006) Determination of estrogens in water by HPLC-UV using cloud point extraction. Talanta 1:47–51

    Google Scholar 

  • Weltzien FA, Andersson E, Andersen Ø, Shalchian-Tabrizi K, Norberg B (2004) The brain-pituitary-gonad axis in male teleosts, with special emphasis on flatfish (Pleuronectiformes). Comp Biochem Physiol A 37(3):447–477

    Google Scholar 

  • Wintgens T, Gallenkemper M, Melin T (2003) Occurrence and removal of endocrine disrupters in landfill leachate treatment plants. Water Sci Technol 48(3):127–134

    CAS  Google Scholar 

  • Woods M, Kumar A (2011) Vitellogenin induction by 17β-estradiol and 17α-ethynylestradiol in male Murray rainbowfish (Melanotaenia fluviatilis). Environ Toxicol Chem 30(11):2620–2627

    CAS  Google Scholar 

  • Wu Z, Zhang Z, Chen S, He F, Fu G, Liang W (2007) Nonylphenol and octylphenol in urban eutrophic lakes of the subtropical China. Fresenius Environ Bull 16:227–234

    CAS  Google Scholar 

  • Yan Z, Lu G, Liu J, Jin S (2012) An integrated assessment of estrogenic contamination and feminization risk in fish in Taihu Lake, China. Ecotoxicol Environ Saf 84:334–340

    CAS  Google Scholar 

  • Yan ZH, Lu GH, Yang XF (2013) Single and combined effects of estrone and 17β-estradiol on male goldfish. Biomed Environ Sci 26(3):176–184

    Google Scholar 

  • Ying GG, Kookana RS (2005) Sorption and degradation of estrogen-like-endocrine disrupting chemicals in soil. Environ Toxicol Chem 24(10):2640–2645

    CAS  Google Scholar 

  • Young SS, Yang HN, Huang DJ, Liu SM, Huang YH, Chiang CT, Liu JW (2014) Using benthic macroinvertebrate and fish communities as bioindicators of the Tanshui River basin around the greater Taipei area—multivariate analysis of spatial variation related to levels of water pollution. Int J Environ Res Public Health 11(7):7116–7143

    Google Scholar 

  • Zhang S, Zhang Q, Darisaw S, Ehie O, Wang G (2007) Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) in Mississippi river water, in New Orleans, Louisiana, USA. Chemosphere 66:1057–1069

    CAS  Google Scholar 

  • Zhao JL, Ying GG, Wang L, Yang JF, Yang XB, Yang LH, Li X (2009) Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography-negative chemical ionization-mass spectrometry. Sci Total Environ 407:962–974

    CAS  Google Scholar 

  • Zhao Y, Xie L, Yan Y (2014) Microcystin-LR impairs zebrafish reproduction by affecting oogenesis and endocrine system. Chemosphere C 120:115–122

    Google Scholar 

  • Zheng S, Wang P, Wang C, Hou J, Qian J (2013) Distribution of metals in water and suspended particulate matter during the resuspension processes in Taihu Lake sediment, China. Quat Int 286:94–102

    Google Scholar 

  • Zhu L, Li W, Zha J, Wang M, Yuan L, Wang Z (2014) Butachlor causes disruption of HPG and HPT axes in adult female rare minnow (Gobiocypris rarus). Chem Biol Interact 221C:119–126

    Google Scholar 

  • Zohar Y, Muñoz-Cueto JA, Elizur A, Kah O (2010) Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol 165(3):438–455

    CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by CONACyT-ICyTDF, code 121184. H.F. Olivares-Rubio and R. Dzul-Caamal are DSc students who receive scholarships from CONACyT. M.E. Gallegos-Rangel and R.L. Madera-Sandoval are MSc students who receive scholarships from CONACyT. M.L. Domínguez-López, E. García-Latorre and A. Vega-López are fellows of Estímulos al Desempeño en Investigación and Comisión y Fomento de Actividades Académicas (Instituto Politécnico Nacional) and Sistema Nacional de Investigadores (SNI, CONACyT, México).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Vega-López.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivares-Rubio, H.F., Dzul-Caamal, R., Gallegos-Rangel, M.E. et al. Relationship between biomarkers and endocrine-disrupting compounds in wild Girardnichthys viviparus from two lakes with different degrees of pollution. Ecotoxicology 24, 664–685 (2015). https://doi.org/10.1007/s10646-014-1414-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1414-4

Keywords

Navigation