Skip to main content

Advertisement

Log in

Toxicity on aquatic organisms exposed to secondary effluent disinfected with chlorine, peracetic acid, ozone and UV radiation

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The toxic potential of four disinfectant agents (chlorine, ozone, peracetic acid and UV radiation), used in the disinfection of urban wastewater, was evaluated with respect to four aquatic organisms. Disinfection assays were carried out with wastewater from the city of Araraquara (São Paulo State, Brazil), and subsequently, toxicity bioassays were applied in order to verify possible adverse effects to the cladocerans (Ceriodaphnia silvestrii and Daphnia similis), midge larvae Chironomus xanthus and fish (Danio rerio). Under the experimental conditions tested, all the disinfectants were capable of producing harmful effects on the test organisms, except for C. xanthus. The toxicity of the effluent to C. silvestrii was observed to increase significantly as a result of disinfection using 2.5 mg L−1 chlorine and 29.9 mg L−1 ozone. Ozonation and chlorination significantly affected the survival of D. similis and D. rerio, causing mortality of 60 to 100 % in comparison to the non-disinfected effluent. In experiments with effluent treated with peracetic acid (PAA) and UV radiation, a statistically significant decrease in survival was only detected for D. rerio. This investigation suggested that the study of the ideal concentrations of disinfectants is a research need for ecologically safe options for the treatment of wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acher A, Fischer E, Turnheim R, Manor Y (1997) Ecologically friendly wastewater disinfection techniques. Water Res 3:1398–1404. doi:10.1016/S0043-1354(96)00000-0

    Article  Google Scholar 

  • American Public Health Association, American Water Work Association, Water Control Federation (1998) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association/American Water Work Association/Water Control Federation, New York

    Google Scholar 

  • Antonelli M, Mezzanotte V, Panouillères DM (2009) Assessment of peracetic acid disinfected effluents by microbiotests. Environ Sci Technol 43:6579–6584. doi:10.1021/es900913t

    Article  CAS  Google Scholar 

  • Antonelli M, Turolla A, Mezzanotte V, Nurizzo C (2013) Peracetic acid for secondary effluent disinfection: a comprehensive performance assessment. Water Sci Technol 68:2638–2644. doi:10.2166/wst.2013.542

    Article  CAS  Google Scholar 

  • Associação Brasileira de Normas Técnicas (2004a) Ecotoxicologia aquática: toxicidade aguda: método de ensaio com Daphnia spp. (Cladocera, Crustacea). ABNT NBR 12713. Rio de Janeiro

  • Associação Brasileira de Normas Técnicas (2004b) Ecotoxicologia aquática: toxicidade aguda: método de ensaio com peixes. ABNT NBR 15088. Rio de Janeiro

  • Associação Brasileira de Normas Técnicas (ABNT) (2005) Avaliação da toxicidade crônica utilizando Ceriodaphnia spp., (Cladocera, Crustacea). ABNT NBR13373. Rio de Janeiro

  • Bayo J, Angosto JM, Gómez-López MD (2009) Ecotoxicological screening of reclaimed disinfected wastewater by Vibrio fischeri bioassay after a chlorination–dechlorination process. J Hazard Mater 172:166–171. doi:10.1016/j.jhazmat.2009.06.157

    Article  CAS  Google Scholar 

  • Bilotta P, Daniel LA (2010) Advanced process of microbiological control of wastewater in combined system of disinfection with UV radiation. Water Sci Technol 61:2469–2675. doi:10.2166/wst.2010.155

    Article  CAS  Google Scholar 

  • Blatchley ER, Gong WL, Alleman JE, Rose JB, Huffman DE, Otaki M, Lisle JT (2007) Effects of wastewater disinfection on waterborne bacteria and viruses. Water Environ Res 79:81–92. doi:10.2175/106143006X102024

  • Blatchley ER III, Hunt BA, Duggirala R, Thompson JE, Zhao J, Halaby T, Cowge RL, Straub CM, Alleman JE (1997) Effects of disinfectants on wastewater effluent toxicity. Water Res 31:1581–1588. doi:10.1016/S0043-1354(96)00396-X

    Article  CAS  Google Scholar 

  • Brasil (2005) Ministério da Saúde. Secretaria de Vigilância em Saúde. PORTARIA No 518/GM Em 25 de março de 2004. Ministério da Saúde. Secretaria de Vigilância em Saúde Ambiental. Brasília. Editora do Ministério da Saúde. (Série E: Legislação em Saúde)

  • Burton GAJR, Denton DL, Ho K, Ireland DS (2003) Sediment toxicity testing issues and methods. In: Hoffman DJ, Rattner GA, Burton GAJR, Cairns JR (eds) Handbook of ecotoxicology. Lewis Plublishers, Boca Raton

    Google Scholar 

  • Cao N, Yang M, Zhang Y, Hu J, Ike M, Hirotsuji J, Matsui H, Inoue D, Sei K (2009) Evaluation of wastewater reclamation technologies based on in vitro and in vivo bioassays. Sci Total Environ 407:1588–1597. doi:10.1016/j.scitotenv.2008.10.048

    Article  CAS  Google Scholar 

  • Chen CM, Shih ML, Lee SZ, Wang JS (2001) Increased toxicity of textile effluents by a chlorination process using sodium hypochlorite. Water Sci Technol 43:1–8

    Google Scholar 

  • CONAMA (2005) Resolução no 357, de 17 de março de 2005. Resolução do CONAMA para a classificação dos corpos de água para o seu enquadramento, bem como estabelecimento das condições e padrões de lançamento de efluentes

  • CONAMA (2011) Resolução no 430, de 13 de maio de 2011. Resolução do CONAMA sobre as condições e padrões de efluentes, complementa e altera Resolução no 357, de 17 de março de 2005

  • Costa JB (2007) Avaliação ecotoxicológica de efluente de tratamento secundário de esgoto sanitário após desinfecção com ácido peracético, cloro, ozônio e radiação ultravioleta, Tese. Universidade de São Paulo, São Paulo

    Google Scholar 

  • Crebelli R, Conti L, Marchini S, Monarca S, Feretti D, Zerbini I, Zani C, Veschetti E, Cutilli D, Ottaviani M (2003) Genotoxic and ecotoxic effects of urban waste water disinfected with sodium hypochlorite or peracetic acid. Ann Ig 15:277–302

    CAS  Google Scholar 

  • Cywinska A, Crump D, Lean D (2000) Influence of UV radiation on four freshwater invertebrates. Photochem Photobiol 72:652–659. doi:10.1562/0031-8655(2000)072<0652:IOUROF>2.0.CO;2

    Article  CAS  Google Scholar 

  • Daniel LA (2001) Projeto PROSAB. Processos de desinfecção e desinfetantes alternativos na produção de água potável. RiMa, Sao Paulo

    Google Scholar 

  • De Souza JB, Daniel LA (2011) Synergism effects for Escherichia coli inactivation applying the combined ozone and chlorine disinfection method. Environ Technol 32:1401–1408. doi:10.1080/09593330.2010.537373

    Article  Google Scholar 

  • De Souza JB, Sartori L, Daniel LA (2007). Influência da cor e turbidez na desinfecção de águas de abastecimento utilizando-se cloro e radiação ultravioleta. In: XXVII Congresso Interamericano de Engenharia Sanitária e Ambiental

  • Dell’Erba A, Falsanisi D, Liberti L, Notarnicola M, Santoro D (2007) Disinfection by-products formation during wastewater disinfection with peracetic acid. Desalination 215:177–186a. doi:10.1016/j.desal.2006.08.021

    Article  Google Scholar 

  • Emmanuel E, Keck G, Blanchard JM, Vermande P, Perrodin Y (2004) Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater. Environ Int 30:891–900. doi:10.1016/j.envint.2004.02.004

    Article  CAS  Google Scholar 

  • Englert D, Zubrod J, Schulz R, Bundschuh M (2013) Effects of municipal wastewater on aquatic ecosystem structure and function in the receiving stream. Sci Total Environ 454–455:401–410. doi:10.1016/j.scitotenv.2013.03.025

    Article  Google Scholar 

  • Falsanisi D, Gehr R, Santoro D, Dell’erba A, Notarnicola M, Liberti L (2006) Kinetics of PAA demand and its implications on disinfection of wastewaters. Water Qual Res J Can 41:398–409

    CAS  Google Scholar 

  • Ferraris M, Chiesara E, Radice S, Giovara A, Frigerio S, Fumagalli R, Marabini L (2005) Study of potential toxic effects on rainbow trout hepatocytes of surface water treated with chlorine or alternative disinfectants. Chemosphere 60:65–73. doi:10.1016/j.chemosphere.2004.11.034

    Article  CAS  Google Scholar 

  • Fonseca AL (1997) Avaliação da qualidade da água do Rio Piracicaba/SP através de testes de toxicidade com invertebrados, Tese. Universidade de São Paulo, São Paulo

    Google Scholar 

  • Fonseca AL, Rocha O (2004) Laboratory cultures of the native species Chironomus xanthus Rempel, 1939 (Diptera-Chironomidae). Acta Limnol Bras 16:153–161

    Google Scholar 

  • Frascari F, Frignani M, Guerzoni S (1988) Sediments and pollution in the Northern Adriatic Sea. Ann. NY Acad. Sci. 534:1000–1020. doi:10.1111/j.1749-6632.1988.tb30191.x

    Article  CAS  Google Scholar 

  • Gasi TMT et al (1995) Aplicação de ácido peracético para desinfecção se efluentes de lodos ativados. In: 18° Congresso Brasileiro de Engenharia Sanitária e Ambiental, 18, Salvador. Anais

  • Golterman HL, Clymo RS, Ohnstad MAM (1978) Methods for physical and chemical analysis of freshwaters. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Gonçalves RF (2003) Desinfecção de efluentes sanitários. Rima, Sao Paulo

    Google Scholar 

  • Gulley DD, Boelter AM, Bergman HL (1991) Toxstat 3.3 computer program

  • Hamilton M, Russo RC, Thurston RV (1977) Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays. Env Sci Technol 11:714–719. doi:10.1021/es60130a004

    Article  CAS  Google Scholar 

  • Hatchard CG, Parker CA (1956) A new sensitive chemical actinometer II potassium ferrioxalate as a standard chemical actinometer. Proc R Soc Lond 235(A):518–536

  • Hernando MD, Fernández-Alba AR, Tauler R, Barceló D (2005) Toxicity assays applied to wastewater treatment. Talanta 65:358–366. doi:10.1016/j.talanta.2004.07.012

    Article  CAS  Google Scholar 

  • Hijnen WAM, Beerendonk EF, Medema GJ (2006) Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Res 40:3–22. doi:10.1016/j.watres.2005.10.030

    Article  CAS  Google Scholar 

  • Hutchinson TH, Jha AN, Mackay JM, Elliott BM, Dixon DR (1998) Assessment of developmental effects, cytotoxicity and genotoxicity in the marine polychaete (Platynereis dumerilii) exposed to disinfected municipal sewage effluent. Mutat Res Fund Mol M 399:97–108. doi:10.1016/S0027-5107(97)00269-8

    Article  CAS  Google Scholar 

  • Kitis M (2004) Disinfection of wastewater with peracetic acid: a review. Environ Int 30:47–55

    Article  CAS  Google Scholar 

  • Koroleff F (1976) Determination of nutrients. In: Grasshoff K (ed) Methods of seawater analisys. Verlag Chemie, Weinhein

    Google Scholar 

  • Leal LH, Soeter AM, Kools SAE, Kraak MHS, Parsons JR, Temmink H, Zeeman G, Buisman CJN (2012) Ecotoxicological assessment of grey water treatment systems with Daphnia magna and Chironomus riparius. Water Res 46:1038–1044. doi:10.1016/j.watres.2011.11.079

    Article  Google Scholar 

  • Leynen M, Duvivier L, Girboux P, Ollevier F (1998) Toxicity of ozone to fish larvae and Daphnia magna. Ecotoxicol Environ Safe 41:176–179. doi:10.1006/eesa.1998.1696

    Article  CAS  Google Scholar 

  • Li D, Craik SA, Smith DW, Belosevic M (2009) Infectivity of Giardia lamblia cysts obtained from wastewater treated with ultraviolet light. Water Res 43:3037–3046. doi:10.1016/j.watres.2009.04.024

    Article  CAS  Google Scholar 

  • Mackereth FJH, Heron J, Talling JF (1978) Water Analysis: some revised methods for limnologists. Wilson & Sons, Kendal

    Google Scholar 

  • Magdeburg A, Stalter D, Oehlmann J (2012) Whole effluent toxicity assessment at a wastewater treatment plant upgraded with a full-scale post-ozonation using aquatic key species. Chemosphere 88:1008–1014. doi:10.1016/j.chemosphere.2012.04.017

    Article  CAS  Google Scholar 

  • Manning TM, Wilson SP, Chapman JC (1996) Toxicity of chlorine and other chlorinated compounds to some Australian aquatic organisms. Bull Environ Contam Toxicol 56:971–976

    Article  CAS  Google Scholar 

  • Mano H, Sakamoto M, Tanaka Y (2010) A comparative study of insecticide toxicity among seven cladoceran species. Ecotoxicology 19:1620–1625. doi:10.1007/s10646-010-0547-3

    Article  CAS  Google Scholar 

  • Marchand PA, Straus DL, Wienke A, Pedersen LF, Meinelt T (2013) Effect of water hardness on peracetic acid toxicity to zebrafish, Danio rerio, embryos. Aquac Int 21:679–686. doi:10.1007/s10499-012-9602-9

    Article  CAS  Google Scholar 

  • Mattei D, Cataudella S, Mancini L, Tancioni L, Migliore L (2006) Tiber River quality in the stretch of a sewage treatment plant: effects of river water or disinfectants to Daphnia and structure of benthic macroinvertebrates community. Water Air Soil Pollut 177:441–455. doi:10.1007/s11270-006-9183-1

    Article  CAS  Google Scholar 

  • Mendonça E, Picado A, Paixão SM, Silva L, Cunha MA, Leitão S, Moura I, Cortez C, Brito F (2009) Ecotoxicity tests in the environmental analysis of wastewater treatment plants: case study in Portugal. J Hazard Mater 163:665–670. doi:10.1016/j.jhazmat.2008.07.012

    Article  Google Scholar 

  • National Water Research Institute (2012) NWRI. Guidelines for drinking water and water reuse. National Water Research Institute, Fountain Valley

  • Oppenheimer JA, Jacangelo JG, Laine JM, Hoagland JE (1997) Testing the equivalency of ultraviolet light and chlorine for disinfection of wastewater to reclamation standards. Water Environ Res 69:14–24. doi:10.2175/106143097X125137

    Article  CAS  Google Scholar 

  • Panouilleres M, Boillot C, Perrodin Y (2007) Study of the combined effects of a peracetic acid-based disinfectant and surfactants contained in hospital effluents on Daphnia magna. Ecotoxicology 16:327–340. doi:10.1007/s10646-007-0136-2

    Article  CAS  Google Scholar 

  • Pedersen LF, Pedersen PB, Nielsen JL, Nielsen PH (2009) Peracetic acid degradation and effects on nitrification in recirculating aquaculture systems. Aquaculture 296:246–254. doi:10.1016/j.aquaculture.2009.08.021

    Article  CAS  Google Scholar 

  • Pereira RO, Postigo C, Alda ML, Daniel LA, Barceló D (2011a) Removal of estrogens through water disinfection processes and formation of by-products. Chemosphere 82:789–799. doi:10.1016/j.chemosphere.2010.10.082

    Article  CAS  Google Scholar 

  • Pereira RO, Alda ML, Joglar J, Daniel LA, Barceló D (2011b) Identification of new ozonation disinfection byproducts of 17b-estradiol and estrone in water. Chemosphere 84:1535–1541. doi:10.1016/j.chemosphere.2011.05.058

    Article  CAS  Google Scholar 

  • Petala M, Samaras P, Zouboulis A, Kungolos A, Sakellaropoulos GP (2008) Influence of ozonation on the in vitro mutagenic and toxic potential of secondary effluents. Water Res 42:4929–4940. doi:10.1016/j.watres.2008.09.018

    Article  CAS  Google Scholar 

  • Pignata C, Fea E, Degan R, Lorenzi E, De Ceglia M, Schilirò T, Gilli G (2012) Chlorination in a wastewater treatment plant: acute toxicity effects of the effluent and of the recipient water body. Environ Monit Assess 184:2091–2103. doi:10.1007/s10661-011-2102-y

    Article  CAS  Google Scholar 

  • Rebhun M, Heller Grossman L, Manka J (1997) Formation of disinfection byproducts during chlorination of secondary effluent and renovated water. Water Environ Res 69:1154–1162. doi:10.2175/106143097X125902

    Article  CAS  Google Scholar 

  • Rosa EVC, Simionatto EL, Sierra MMS, Bertoli SL, Radetski CM (2001) Toxicity-based criteria for the evaluation of textile wastewater treatment efficiency. Environ Toxicol Chem 20:839–845. doi:10.1002/etc.5620200420

    Article  CAS  Google Scholar 

  • Sarma SSS, Peredo-Alvarez VM, Nandini S (2007) Comparative study of the sensitivities of neonates and adults of selected cladoceran (Cladocera: Crustacea) species to acute toxicity stress. J Environ Sci Health A 42:1449–1452. doi:10.1080/10934520701480839

    Article  CAS  Google Scholar 

  • Selçuk H, Eremektar G, Süreyya M (2006) The effect of pre-ozone oxidation on acute toxicity and inert soluble COD fractions of a textile finishing industry wastewater. J Hazard Mater B137:254–260. doi:10.1016/j.jhazmat.2006.01.055

    Article  Google Scholar 

  • Silva GHR, Daniel LA, Bruning H, Rulkens WH (2010) Anaerobic effluent disinfection using ozone: Byproducts formation. Bioresour Technol 101:6981–6986. doi:10.1016/j.biortech.2010.04.022

    Article  CAS  Google Scholar 

  • Smital T, Terzic S, Zaja R, Senta I, Pivcevic B, Popovic M, Mikac I, Terzic S, Tollefsen KV, Ahel M (2011) Assessment of toxicological profiles of the municipal wastewater effluents using chemical analyses and bioassays. Ecotoxicol Environ Safe 74:844–851. doi:10.1016/j.ecoenv.2010.11.010

    Article  CAS  Google Scholar 

  • Stalter D, Magdeburga A, Weil M, Knackerb T, Oehlmann J (2010a) Toxication or detoxication? In vivo toxicity assessment of ozonation as advanced wastewater treatment with the rainbow trout. Water Res 44:439–448. doi:10.1016/j.watres.2009.07.025

    Article  CAS  Google Scholar 

  • Stalter D, Magdeburga A, Oehlmann J (2010b) Comparative toxicity assessment of ozone and activated carbon treated sewage effluents using an in vivo test battery. Water Res 44:2610–2620. doi:10.1016/j.watres.2010.01.023

    Article  CAS  Google Scholar 

  • Straus DL, Meinelt T, Farmer BD, Beck BH (2012) Acute toxicity and histopathology of channel catfish fry exposed to peracetic acid. Aquaculture 342–343:34–138. doi:10.1016/j.aquaculture.2012.02.024

    Google Scholar 

  • Sun YX, Wu QY, Hu HY, Tian J (2009) Effect of ammonia on the formation of THMs and HAAs in secondary effluent chlorination. Chemosphere 76:631–637. doi:10.1016/j.chemosphere.2009.04.041

    Article  CAS  Google Scholar 

  • Thompson JE, Blatchley ER III (1999) Toxicity effects of Υ-irradiated wastewater effluents. Water Res 33:2053–2058

    Article  CAS  Google Scholar 

  • Tyrrell SA, Rippey SR, Watkins WD (1995) Inactivation of bacterial and viral indicators in secondary sewage effluents, using chlorine and ozone. Water Res 29:2483–2490. doi:10.1016/0043-1354(95)00103-R

  • United States Environmental Protection Agency (1975) Disinfection of wastewater. Task Force Report. Environmental Protection Agency. Office of Research and Development

  • United States Environmental Protection Agency (1999) Office of Water EPA 815-R-99-014 (4607). Alternative disinfectants and oxidants guidance manual

  • Valenti TW, Cherry DS, Currie RJ, Neves RJ, Jones JW, Mair R, Kane CM (2006) Chlorine toxicity to early life stages of freshwater mussels (Bivalvia: Unionidae). Environ Toxicol Chem 25:2512–2518. doi:10.1897/05-527R1.1

    Article  CAS  Google Scholar 

  • Vasquez MI, Fatta-Kassinos D (2013) Is the evaluation of “traditional” physicochemical parameters sufficient to explain the potential toxicity of the treated wastewater at sewage treatment plants? Environ Sci Pollut Res 20:3516–3528. doi:10.1007/s11356-013-1637-6

    Article  CAS  Google Scholar 

  • Versteeg DJ, Stalmans M, Dyer SD, Janssen C (1997) Ceriodaphnia and Daphnia: a comparison of their sensitivity to xenobiotics and utility as a test species. Chemosphere 34:869–892. doi:10.1016/S0045-6535(97)00014-3

  • Verween A, Vincx M, Degraer S (2009) Comparative toxicity of chlorine and peracetic acid in the biofouling control of Mytilopsis leucophaeata and Dreissena polymorpha embryos (Mollusca, Bivalvia). Int Biodeterior Biodegr 63:523–528. doi:10.1016/j.ibiod.2009.03.002

    Article  CAS  Google Scholar 

  • Watson K, Shaw G, Leusch FDL, Knight NL (2012) Chlorine disinfection by-products in wastewater effluent: Bioassay-based assessment of toxicological impact. Water Res 46:6069–6083. doi:10.1016/j.watres.2012.08.026

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2006a) Guidelines for drinking-water quality. First addendum to third edition, vol 1. Recommendations

  • World Health Organization (WHO) (2006b) Guidelines for the safe use of wastewater, excreta and greywater. World Health Organization, Geneva

  • World Health Organization (WHO) (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva

    Google Scholar 

  • Wu MN, Wang XC, Ma XY (2013) Characteristics of THMFP increase in secondary effluent and its potential toxicity. J Hazard Mater 261:325–331. doi:10.1016/j.jhazmat.2013.07.022

    Article  CAS  Google Scholar 

  • Xu P, Janex ML, Savoye P, Cockx A, Lazarova V (2002) Wastewater disinfection by ozone: main parameters for process design. Water Res 36:1043–1055. doi:10.1016/S0043-1354(01)00298-6

  • Zargar S, Ghosh TK (2007) Thermal and biocidal (chlorine) effects on select freshwater plankton. Arch Environ Contam Toxicol 53:191–197. doi:10.1007/s00244-006-0108-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Brazilian research support agency CAPES (Coordenação de Aperfeiçoamento Pessoal de Nivel Superior) for the doctoral scholarship given to the first author.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzelei Rodgher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa, J.B., Rodgher, S., Daniel, L.A. et al. Toxicity on aquatic organisms exposed to secondary effluent disinfected with chlorine, peracetic acid, ozone and UV radiation. Ecotoxicology 23, 1803–1813 (2014). https://doi.org/10.1007/s10646-014-1346-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1346-z

Keywords

Navigation