Skip to main content
Log in

Ecotoxicity studies of the levulinate ester series

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The increasing interest in the development of novel green solvents has led to the synthesis of benign alternative products with minimized environmental impacts. However, most of published studies on green solvents focus primarily on their physicochemical properties, with limited emphasis on absence of ecotoxicological assessment. In this study, we evaluated the acute ecotoxicity of four levulinates (levulinic acid, methyl levulinate, ethyl levulinate and butyl levulinate) on freshwater algae (Chlamydomonas reinhardtii), bacteria (Vibrio fischeri), daphnids (Daphnia magna) and earthworms (Eisenia foetida) using various dose–response tests. As a general trend, the toxicity of levulinate esters in aquatic exposure (assessed as the EC50) increased as a function of increasing alkyl chain length; accordingly, the most toxic compound for the aquatic organisms was butyl levulinate, followed by ethyl levulinate and methyl levulinate. The most toxic compound for E. foetida (terrestrial exposure) was methyl levulinate, followed by ethyl levulinate, butyl levulinate and levulinic acid; in this case, we observed an inverse relationship between toxicity and alkyl chain length. Based on both the lowest EC50 found in the aquatic media and the ratio between predicted environmental concentration and the predicted no-effect concentration, we have estimated the maximum allowable values in the environment for these chemicals to be 1.093 mg L−1 for levulinic acid, 2.761 mg L−1 for methyl levulinate, 0.982 mg L−1 for ethyl levulinate and 0.151 mg L−1 for butyl levulinate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahluwalia VK, Varma RS (2009) Green solvents for organic synthesis. Alpha Science International, Oxford

    Google Scholar 

  • Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349

    Article  CAS  Google Scholar 

  • Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford and New York

    Google Scholar 

  • Bliss CI (1934) The method of probits. Science 79:38–39

    Article  CAS  Google Scholar 

  • Brack W, Frank H (1998) Chlorophyll a fluorescence: a tool for the investigation of toxic effects in the photosynthetic apparatus. Ecotoxicol Environ Saf 40:34–41

    Article  CAS  Google Scholar 

  • Brack W, Rottler H, Frank H (1998) Volatile fractions of landfill leachates and their effect on Chlamydomonas reinhardtii: in vivo chlorophyll A fluorescence. Environ Toxicol Chem 17:1982–1991

    Article  CAS  Google Scholar 

  • Cho C, Jeon Y, Pham TPT, Vijayaraghavan K, Yun Y (2008) The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicol Environ Saf 71:166–171

    Article  CAS  Google Scholar 

  • COM (2003) 644 final de 29.10.2003. Comisión de las comunidades europeas (2003) Propuesta del Reglamento relativa al registro, la evaluación, la autorización y la restricción de las sustancias y los preparados químicos (REACH) por el que se crea la Agencia Europea de Sustancias y Preparados Químicos. CEE Bruselas

  • Conrad R, Buchel C, Wilhelm C, Arsalane W, Berkaloff C, Duval J (1993) Changes in yield in in-vivo fluorescence of chlorophyll a as a tool for selective herbicide monitoring. J Appl Phycol 5:505–516

    Article  CAS  Google Scholar 

  • Corcoll N (2011) The use of pulse amplitude modulated fluorescence techniques for metal toxicity assessment in fluvial biofilms. Dissertation. University of Girona (Spain)

  • Corcoll N, Bonet B, Leira M, Guasch H (2011) Chl-a fluorescence parameters as biomarkers of metal toxicity in fluvial biofilms: an experimental study. Hydrobiologia 673:119–136

    Article  CAS  Google Scholar 

  • Diaz-Alvarez AE, Francos J, Lastra-Barreira B, Crochet P, Cadierno V (2011) Glycerol and derived solvents: new sustainable reaction media for organic synthesis. Chem Commun 47:6208–6227

    Article  CAS  Google Scholar 

  • Dorigo U, Leboulanger C (2001) A pulse–amplitude modulated fluorescence-based method for assessing the effects of photosystem II herbicides on freshwater periphyton. J Appl Phycol 13:509–515

    Article  CAS  Google Scholar 

  • Ghose A, Crippen G (1986) Atomic physicochemical parameters for 3-dimensional structure-directed quantitative structure–activity-relationships. 1. partition-coefficients as a measure of hydrophobicity. J Comput Chem 7:565–577

    Article  CAS  Google Scholar 

  • Ghose A, Pritchett A, Crippen G (1988) Atomic physicochemical parameters for 3-dimensional structure directed quantitative structure-activity-relationships. 3. modeling hydrophobic interactions. J Comput Chem 9:80–90

    Article  CAS  Google Scholar 

  • Guasch H, Sabater S (1998) Light history influences the sensitivity to atrazine in periphytic algae. J Phycol 34:233–241

    Article  CAS  Google Scholar 

  • Guerrero H, Lafuente C, Royo F, Lomba L, Giner B (2011) P rho T behavior of several chemicals from biomass. Energy Fuels 25:3009–3013

    Article  CAS  Google Scholar 

  • Haibo X (2013) Toxicity and ecotoxicity of ionic liquids for biorefinery. In: Nicholas, Gathergood (eds) The role of green chemistry in biomass processing and conversion. Wiley, Hoboken, pp 109–115

    Google Scholar 

  • Hutchinson T, Shillabeer N, Winter M, Pickford D (2006) Acute and chronic effects of carrier solvents in aquatic organisms: a critical review. Aquat Toxicol 76:69–92

    Article  CAS  Google Scholar 

  • Jennings V, Rayner-Brandes M, Bird D (2001) Assessing chemical toxicity with the bioluminescent photobacterium (Vibrio fischeri): a comparison of three commercial systems. Water Res 35:3448–3456

    Article  CAS  Google Scholar 

  • Johanningmeier U, Howell S (1984) Regulation of light-harvesting chlorophyll-binding protein messenger-RNA accumulation in Chlamydomonas-reinhardi: possible involvement of chlorophyll synthesis precursors. J Biol Chem 259:3541–3549

    Google Scholar 

  • Juneau P, Dewez D, Matsui S, Kim S, Popovic R (2001) Evaluation of different algal species sensitivity to mercury and metolachlor by PAM-fluorometry. Chemosphere 45:589–598

    Article  CAS  Google Scholar 

  • Juneau P, El Berdey A, Popovic R (2002) PAM fluorometry in the determination of the sensitivity of Chlorella vulgaris, Selenastrum capricornutum, and Chlamydomonas reinhardtii to copper. Arch Environ Contam Toxicol 42:155–164

    Article  CAS  Google Scholar 

  • Keithly L, Wayne G, Cullen D, Connolly G (2005) Industry research on the use and effects of levulinic acid: a case study in cigarette additives. Nicotine Tobacco Res 7:761–771

    Article  CAS  Google Scholar 

  • Khusnutdinov RI, Baiguzina AR, Smirnov AA, Mukminov RR, Whemilev UM (2007) Furfuryl alcohol in synthesis of levulinic acid esters and difurylmethane with Fe and Rh complexes. Russ J Appl Chem 80:1687–1690

    Article  CAS  Google Scholar 

  • Lomba L, Giner B, Bandres I, Lafuente C, Pino MR (2011) Physicochemical properties of green solvents derived from biomass. Green Chem 13:2062–2070

    Article  CAS  Google Scholar 

  • Lomba L, Lafuente C, García-Mardones M, Gascón I, Giner B (2013) Thermophysical study of methyl levulinate. J Chem Thermodyn 65(2013):34–41

    Article  CAS  Google Scholar 

  • Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI (2007) The role of hydrophobic interactions in positioning of peripheral proteins in membranes. BMC Struct Biol 7:44

    Article  Google Scholar 

  • MacPhee C, Ruelle R (1969) Lethal effects of 1888 chemicals upon four species of fish from western North America. University of Idaho (Forest, Wildlife, and Range Experiment Station), Moscow

  • Meylan W, Howard P (1995) Atom fragment contribution method for estimating octanol–water partition-coefficients. J Pharm Sci 84:83–92

    Article  CAS  Google Scholar 

  • Navarro E, Robinson CT, Behra R (2008) Increased tolerance to ultraviolet radiation (UVR) and cotolerance to cadmium in UVR-acclimatized freshwater periphyton. Limnol Oceanogr 53:1149–1158

    Article  CAS  Google Scholar 

  • OC SE TG 202 2004 OC SE TG 202 2004 (European C 2 method as described in the EU Regulation 440/2008)

  • OECD 202 (1984) Guideline for Testing of Chemicals No. 202, Daphnia sp., acute immobilisation test and reproduction test. OECD, 202, Paris, France 202

  • OECD 207 (1984) Guideline for Testing of Chemicals No. 207, Earthworm acute. Toxicity. OECD 207, Paris, France 207

  • OECD (2006) Ecological categorization results from the Canadian domestic substance list

  • Onorati F, Mecozzi M (2004) Effects of two diluents in the Microtox (R) toxicity bioassay with marine sediments. Chemosphere 54:679–687

    Article  CAS  Google Scholar 

  • Pawlisz A, Peters R (1995) Effects of sublethal exposure on lethal body burdens of narcotic organic-chemicals in daphnia-magna. Environ Sci Technol 29:613–621

    Article  CAS  Google Scholar 

  • QSAR Toolbox 2.3 (2009) The OECD QSAR toolbox for grouping chemicals into categories. http://www.qsartoolbox.org/download.html. Accessed 14 June 2012

  • Roberts B, Dorough H (1984) Relative toxicities of chemicals to the earthworm Eisenia-foetida. Environ Toxicol Chem 3:67–78

    Article  CAS  Google Scholar 

  • Scheringer M (2002) Persistence and spatial range of environmental chemicals: new ethical and scientific concepts for risk assessment. Wiley, Weinheim

    Book  Google Scholar 

  • Stoiber TL, Shafer MM, Armstrong DE (2011) Induction of reactive oxygen species in Chlamydomonas reinhardtii in response to contrasting trace metal exposures. Environ Toxicol 28(9):516–523

    Article  Google Scholar 

  • Szivak I, Behra R, Sigg L (2009) Metal-induced reactive oxygen species production in Chlamydomonas Reinhardtii (Chlorophyceae). J Phycol 45:427–435

    Article  CAS  Google Scholar 

  • Timokhin BV, Baransky VA, Eliseeva GD (1999) Levulinic acid in organic synthesis. Usp Khim 68:80–93

    Article  Google Scholar 

  • Tischer RG et al (1942) The non-toxicity of levulinic acid. J Am Phar Assoc 31(7):217–220

    Article  CAS  Google Scholar 

  • UNE-EN-ISO 11348-3 (2007) Water quality: determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test). UNE-EN-ISO 11348-3

  • Viswanadhan V, Ghose A, Revankar G, Robins R (1989) Atomic physicochemical parameters for 3 dimensional structure directed quantitative structure–activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally-occurring nucleoside antibiotics. J Chem Inf Comput Sci 29:163–172

    Article  CAS  Google Scholar 

  • Wernet G, Conradt S, Isenring HP, Jimenez-Gonzalez C, Hungerbuehler K (2010) Life cycle assessment of fine chemical production: a case study of pharmaceutical synthesis. Int J Life Cycle Assess 15:294–303

    Article  CAS  Google Scholar 

  • Xiaohua Lu YH (2009) Evaluations and Toxicity of ILs. In: Mingos DMP (ed) Toxicity molecular thermodynamics of complex systems. Springer, Berlin, Heidelberg, pp 179–182

    Google Scholar 

  • Yamada M, Hidaka T, Fukamachi H (1996) Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Sci Hortic 67:39–48

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Imerys Ceramics España, S.A. for providing artificial soil for the earthworm tests. The researchers L. Lomba, B. Giner and Ma. Rosa Pino are supported by the regional Aragon Government (Consolidated Applied Research Group ref. E02) and European Social Fund “Construyendo Europa desde Aragón”. The work of S. Muñiz and E. Navarro is supported by the Spanish Ministry of Economy and Competitiveness (National Research Plan, ref. BFU2010-22053) and by the regional Aragon Government (Consolidated Applied Research Group ref. E61). Furthermore, Green Pharmacy acknowledges financial support from EEE53 SL. Business groups: Pinares de Venecia División Energética and Brial (ENATICA). Finally, we want to thank Dr. Manuel Gómez (Universidad San Jorge) both for his kind help and for having provided us with useful information.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Giner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lomba, L., Muñiz, S., Pino, M.R. et al. Ecotoxicity studies of the levulinate ester series. Ecotoxicology 23, 1484–1493 (2014). https://doi.org/10.1007/s10646-014-1290-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1290-y

Keywords

Navigation