Skip to main content

Advertisement

Log in

Transition accounting for India in a multi-sector dynamic general equilibrium model

  • Published:
Economic Change and Restructuring Aims and scope Submit manuscript

Abstract

Using a quantitative methodology designed specifically for emerging economies, we measure the components of India’s economic growth over the period 1960–2005. Our approach accounts for time-varying parameters, transitional dynamics and non-linear trends. We find that increased productivity in the service sector, facilitated by a structural shift toward services, is the principal driver of India’s economic growth. Our measures also suggest that the allocation of inputs across sectors has not improved over this period, and in the case of labor appears to have significantly worsened. We further find that fluctuations in output around its trend are due primarily to fluctuations in sector-specific total factor productivity, with fluctuations in labor market distortions and labor taxes also playing important roles. In the period 1960–1980, productivity fluctuations in the agricultural sector are the dominant source of cycles. Since then, productivity fluctuations in the manufacturing and service sectors have been more important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Although sectoral shifts are a feature of developed economies as well, they are considered central to the process of development.

  2. In the approach most similar to ours, Lahiri and Yi (2006) find non-linear transition paths for a deterministic, constant-parameter economy. Verma (2012) solves a constant-parameter model that generates sectoral shifts through unbalanced growth; her analysis, however, considers only the effects of productivity growth.

  3. We model capital and labor frictions in different ways only to facilitate our derivations; in the end the frictions’ algebraic (as well as economic) effects are completely symmetric.

  4. To facilitate our analysis of the model’s trends, our treatment of capital taxes—taxes are levied on capital itself—differs from the canonical BCA approach (Chari et al. 2007), where taxes are levied on investment.

  5. Any effects that government spending might have on utility or production will be captured by correlations between government spending and the other wedges. Chari et al. (2007) provide several useful examples.

  6. Bosworth et al.’s (2007) factor shares for agriculture include a component for land (0.25), which we divided evenly between capital and labor.

  7. Lahiri and Yi (2006, 2009 ) calculate the same labor distortions under the names \(\omega ^{l,am}\) and \(\omega ^{l,as}\). They also calculate capital distortions, under the names \(\omega ^{k,am}\) and \(\omega ^{k,as}\).

  8. The variables \(\left\{ y_{t}^{*},\ell _{t}^{*}\right\} _{t}\) can be expressed as functions of \(\left\{ c_{t}^{*},k_{t}^{*}\right\} _{t}\) and the model’s forcing processes.

  9. The only wrinkle is that with endogenous labor supply, the choice of \(c_{t+1} \) in Eq. (13) also affects \(y_{t+1}\), so that even when \(c_{t}\), \(k_{t}\), and \(k_{t+1}\) are known, there is no closed form solution for \(c_{t+1}\). However, it follows from Eq. (15) that \(y_{t+1}\) is decreasing in \(c_{t+1}\), so that given \(k_{t+1}\), the right-hand-side of Eq. (13) is monotonically decreasing in \(c_{t+1}\), and a numerical search is straightforward.

  10. Our approach most closely follows that of Klein (2000) and Blanchard and Kahn (1980). We also incorporate elements of the approaches used by Broze et al. (1985, 1995), Farmer (1993), Farmer and Guo (1994), and Sims (2002).

  11. Allowing time variation introduces a small amount of imprecision into our solution; “Solving time-varying linear expectational difference equations” of Appendix provides a detailed discussion. Ignoring time variation, however, would arguably introduce more inaccuracy. For example, the parameter \(\theta \), the share of services, rises 27 percentage points over the sample period. In contrast, the magnitude of the solution errors appears to be less than 1 % of the consumption deviations.

  12. In general, we assume that the trends follow our estimated trend equations until 2035, and then stay stable. The two exceptions are fiscal policies and depreciation, for which we did not feel comfortable making extended projections. We simply assume these variables stay at their 2005 (or 2006) trend values for the foreseeable future. “Estimated and projected trends” of Appendix shows the projected trends. Our results do not appear sensitive to these assumptions.

  13. We are assuming that the productivity trends shifted slowly over the course of 6 years, rather than in a 1-period break. In all other respects, however, we treat the trend break as known in advance; our ability to divide the data into trend and deviations relies on this assumption. In contrast, Aguiar and Gopinath (2007) argue that trend breaks are the primary source of business cycles in emerging economies.

  14. Bosworth et al. (2007, p. 39) find the amount of growth in India’s service sector productivity to be “quite puzzling”, and perhaps exaggerated by measurement error.

  15. It bears noting that because the wedge series are not orthogonal, these experiments do not produce a true variance decomposition.

  16. Verma (2012) considers this issue, and concludes (p. 173) “an export-led growth hypothesis of service sector growth is difficult to support.”

References

  • Aguiar M, Gopinath G (2007) Emerging market business cycles: the cycle is the trend. J Polit Econ 115:69–102

    Article  Google Scholar 

  • Ahluwalia I (1995) India: Industrial development review. The Economist Intelligence Unit and UNIDO

  • Bai J, Perron P (1998) Estimating and testing linear models with multiple structural changes. Econometrica 66:47–78

    Article  Google Scholar 

  • Bai J, Perron P (2003) Computation and analysis of multiple structural change models. J Appl Econ 18:1–22

    Article  Google Scholar 

  • Bäurle G, Burren D (2007) A note on business cycle accounting. Universität Bern Discussion Paper 07-05

  • Besley T, Burgess R (2004) Can labor regulation hinder economic performance? Evidence from India. Quart J Econ 119:91–134

    Article  Google Scholar 

  • Blanchard O, Kahn C (1980) The solution of linear difference models under rational expectations. Econometrica 48:1305–11

    Article  Google Scholar 

  • Bosworth B, Collins S (2008) Accounting for growth: comparing China and India. J Econ Perspect 22:45–66

    Article  Google Scholar 

  • Bosworth B, Collins S, Virmani A (2007) Sources of growth in the Indian economy. NBER Working paper 12901

  • Broze L, Gourieroux C, Szafarz A (1985) Solutions of linear rational expectations models. Econ Theory 1:341–368

    Article  Google Scholar 

  • Broze L, Gourieroux C, Szafarz A (1995) Solutions of multivariate rational expectations models. Econ Theory 11:229–257

    Article  Google Scholar 

  • Chakraborty (2006) Business Cycle Accounting of the Indian Economy. Indian Econ J 54(2):117–134

  • Chari V, Kehoe P, McGrattan E (2006) Appendices. Federal Reserve Bank of Minneapolis Staff, Report 362

  • Chari V, Kehoe P, McGrattan E (2007) Business cycle accounting. Econometrica 75:781–836

    Article  Google Scholar 

  • Farmer R (1993) The macroeconomics of self-fulfilling prophecies. The MIT Press, Cambridge

    Google Scholar 

  • Fan P (2011) Innovation capacity and economic development: China and India. Econ Change Restruct 44:49–73

    Article  Google Scholar 

  • Farmer R, Guo J (1994) Real business cycles and the animal spirits hypothesis. J Econ Theory 63:42–72

    Article  Google Scholar 

  • Hall R (2008) Sources and mechanisms of cyclical fluctuations in the labor market. Mimeo

  • Jones J (2002) Has fiscal policy helped stabilize the postwar U.S. Economy? J Monet Econ 49:709–746

    Article  Google Scholar 

  • King R, Plosser C, Rebelo S (1988) Production, growth and business cycles: the basic neoclassical model. J Monet Econ 21:195–232

    Article  Google Scholar 

  • King R, Plosser C, Rebelo S (2002) Production, growth and business cycles: technical appendix. Comput Econ 20:87–116

    Article  Google Scholar 

  • Klein P (2000) Using the generalized Schur form to solve a system of linear expectational difference equations. J Econ Dyn Control 24:1405–1423

    Article  Google Scholar 

  • Kobayashi K, Inaba M (2006) Business cycle accounting for the Japanese economy. Business cycle accounting for the Japanese economy. Jpn World Econ 18:418–440

    Article  Google Scholar 

  • Lahiri A, Yi K (2006) A tale of two states: Maharastra and West Bengal. Federal Reserve Bank of Philadelphia Working Paper, WP/06-16

  • Lahiri A, Yi K (2009) A tale of two states: Maharastra and West Bengal. Rev Econ Dyn 12:523–542

    Article  Google Scholar 

  • Mulligan C (2005) Public policies as specification errors. Rev Econ Dyn 8:902–926

    Article  Google Scholar 

  • Panagariya A (2006) Transforming India. Presentation at the conference “India: an emerging giant ”, October 13–15, Columbia University

  • Poirson H (2006) The tax system in India: could reform spur growth? IMF Working paper, WP/06/93

  • Parente S, Prescott E (2000) Barriers to riches. MIT Press, Cambridge

    Google Scholar 

  • Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, United Nations, 2008. World population prospects: the 2006 revision and world urbanization prospects: the 2005 Revision, http://esa.un.org/unpp. Accessed 1 April 2008

  • Rodrik D, Subramanian A (2004) From “Hindu Growth” to productivity surge: the mystery of the Indian growth transition. IMF Working paper, WP/04/77

  • Sims C (2002) Solving linear rational expectations models. Comput Econ 20:1–20

    Article  Google Scholar 

  • Singh N (2004) Information technology as an engine of broad-based growth in India. Development and Comp Systems 0412012. Economics Working Paper Archive (EconWPA)

  • Unel B (2003) Productivity trends in India’s manufacturing sector in the last two decades. IMF Working Paper, WP/03/22

  • Verma R (2012) Can total factor productivity explain value added growth in services? J Dev Econ 99:163–177

    Article  Google Scholar 

  • Virmani A (2004) Sources of India’s economic growth: trends in total factor froductivity. Indian Council for Research on International Economic Relations, New Delhi, Working Paper No. 131

  • Williamson J, Zagha R (2002) From the Hindu rate of growth to the Hindu rate of reform. Center for Research on Economic Development and Policy Reforms, Stanford University, Working Paper No. 144

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohini Sahu.

Appendix: Background calculations

Appendix: Background calculations

1.1 Input prices

Assuming interiority, the first-order conditions for intermediate goods producers are

$$\begin{aligned} (1-\mu )\frac{p_{mt}Y_{mt}}{L_{mt}}=w_{mt}, \end{aligned}$$
(24a)
$$\begin{aligned} (1-\sigma )\frac{p_{st}Y_{st}}{L_{st}}=w_{st}, \end{aligned}$$
(24b)
$$\begin{aligned} (1-\alpha )\frac{p_{at}Y_{at}}{L_{at}}=w_{at}, \end{aligned}$$
(24c)
$$\begin{aligned} \alpha \frac{p_{at}Y_{at}}{K_{at}}=\mu \frac{p_{mt}Y_{mt}}{K_{mt}}(1+\kappa _{mt})=\sigma \frac{p_{st}Y_{st}}{K_{st}}(1+\kappa _{st}). \end{aligned}$$
(24d)

Under perfect competition and constant returns, the average cost of the final good will equal its price, and it follows from Eqs. (3a) to (3c) that

$$\begin{aligned} p_{t} & = \frac{1}{Y_{t}}\left[ p_{at}Y_{at}+p_{mt}Y_{mt}+p_{st}Y_{st}\right] \nonumber \\ & = \frac{1}{Y_{t}}\left[ p_{t}\psi _{t}Y_{t}+p_{t}\eta _{t}Y_{t}+p_{t}\theta _{t}Y_{t}\right] =1. \end{aligned}$$
(25)

Combining these results with Eqs. (3a) to (3c) produces Eqs. (4a5c).

1.2 Input aggregation

Combining Eqs. (1a2), and inserting Eqs. (5a5c) produces

$$\begin{aligned} K_{at} &= \frac{\psi _{t}\alpha }{\zeta _{t}(1+\kappa _{t})}K_{t}, \\ K_{mt} & = \frac{\eta _{t}\mu (1+\kappa _{mt})}{\zeta _{t}(1+\kappa _{t})}K_{t}, \nonumber \\ K_{st} &= \frac{\theta _{t}\sigma (1+\kappa _{st})}{\zeta _{t}(1+\kappa _{t})}K_{t}, \nonumber \\ \kappa _{t} & \equiv \frac{1}{\zeta _{t}}\left[ \eta _{t}\mu \kappa _{mt}+\theta _{t}\sigma \kappa _{st}\right] , \nonumber \\ \zeta _{t} & \equiv \alpha \psi _{t}+\mu \eta _{t}+\sigma \theta _{t}, \nonumber \end{aligned}$$
(26)

and we can rewrite Eq. (2) as:

$$\begin{aligned} Y_{t}=\widehat{A_{t}}\Omega _{t}K_{t}^{\zeta _{t}}L_{at}^{\psi _{t}(1-\alpha )}L_{mt}^{\eta \left( 1-\mu \right) }L_{st}^{\theta _{t}\left( 1-\sigma \right) }, \end{aligned}$$
(27)

where

$$\begin{aligned} \widehat{A_{t}} & \equiv A_{f_{t}}A_{at}^{\psi _{t}}A_{mt}^{\eta _{t}}A_{st}^{\theta _{t}}\zeta _{t}^{-\zeta _{t}}\left( \alpha \psi _{t}\right) ^{\alpha \psi _{t}}\left( \eta _{t}\mu \right) ^{\eta _{t}\mu }\left( \theta _{t}\sigma \right) ^{\theta _{t}\sigma }, \\ \Omega _{t} & \equiv \frac{\left( 1+\kappa _{mt}\right) ^{\eta _{t}\mu }\left( 1+\kappa _{st}\right) ^{\theta _{t}\sigma }}{\left( 1+\kappa _{t}\right) ^{\zeta _{t}}}. \end{aligned}$$

Combining Eqs. (4a) to (4c) with Eq. (7) produces

$$\begin{aligned} \psi _{t}(1-\alpha )\frac{Y_{t}}{L_{at}}=\eta _{t}(1-\mu )\frac{Y_{t}}{L_{mt}}(1+\ell _{mt})=\theta _{t}(1-\sigma )\frac{Y_{t}}{L_{st}}(1+\ell _{st}). \end{aligned}$$

Letting \(\ell \) denote the average labor market “distortion”,

$$\begin{aligned} \ell _{t}=\frac{1}{1-\zeta _{t}}\left[ \eta _{t}(1-\mu )\ell _{mt}+\theta _{t}(1-\sigma )\ell _{st}\right] , \end{aligned}$$

we can rewrite the preceding equations as

$$\begin{aligned} L_{at} & = \frac{\psi _{t}(1-\alpha )}{(1-\zeta _{t})(1+\ell _{t})}L_{t}, \\ L_{mt} & = \frac{\eta _{t}\left( 1-\mu \right) (1+\ell _{mt})}{(1-\zeta _{t})(1+\ell _{t})}L_{t}, \nonumber \\ L_{st} & = \frac{\theta _{t}(1-\sigma )(1+\ell _{st})}{(1-\zeta _{t})(1+\ell _{t})}L_{t}. \nonumber \end{aligned}$$
(28)

Inserting these results into Eq. (27) and rearranging to find Eq. (8):

$$\begin{aligned} Y_{t}=A_{t}^{1-\zeta _{t}}K_{t}^{\zeta _{t}}L_{t}^{1-\zeta _{t}}, \end{aligned}$$

with the term A defined as in the main text.

Combining Eqs. (4a), (7) and (28), we can rewrite the labor-leisure allocation condition as

$$\begin{aligned} \chi \frac{C_{t}L_{t}^{\gamma }}{N_{t}^{1+\gamma }} & = \psi _{t}(1-\alpha )\frac{Y_{t}}{L_{at}} \\ & = (1-\zeta _{t})(1+\ell _{t})(1-\tau _{lt})\frac{Y_{t}}{L_{t}}. \end{aligned}$$

This is Eq. (9) in the main text.

Combining Eqs. (3a) and (26) produces

$$\begin{aligned} \zeta _{t}\left( 1+\kappa _{t}\right) \frac{Y_{t}}{K_{t}}=r_{t}. \end{aligned}$$
(29)

Combining Eqs. (6) and (29) produces Eq. (11) in the main text.

1.3 Normalized production

Let lower case variables denote upper case variables divided by population and trend productivity, with \(c_{t}=C_{t}/\left( A^{*}_{t}N_{t}\right) \), and so on. The one exception is labor hours, where \(l_{t}=L_{t}/N_{t}\). Inserting these definitions into Eqs. (8) and (9), we get equation (15) in the main text:

$$\begin{aligned} y_{t} & = k_{t}^{\zeta _{t} }(a_{t}l_{t})^{1-\zeta _{t} }, \\ & = \frac{ \chi c_{t}l_{t}^{1+\gamma } }{(1-\zeta _t)(1+\ell _{t})(1-\tau _{lt}) }, \\ & = \left( k_{t}^{\zeta _{t}}a_{t}^{1-\zeta _{t}}\right) ^{\phi _t} c_{t}^{1-\phi _{t}}\left( \frac{1}{\chi }( 1-\zeta _{t}) (1+\ell _{t})( 1-\tau _{lt}) \right) ^{\phi _{t}-1}, \end{aligned}$$

with \(a_{t}\) and \(\phi _{t}\) defined as in the main text.

1.4 Linearization

Let hats (“\(\widehat{\; \;}\)”) denote deviations around the transition path. The tax rates, the allocation wedges (the \(\kappa \)’s and the \(\ell \)’s), the production parameters (\(\zeta \) and \(\phi \)), and the depreciation rate (\(\delta \)) are expressed as level deviations; in these cases \(\widehat{z}_{t}=z_{t}-z_{t}^{*}\). All other variables are expressed as log deviations; in these cases, \(\widehat{z}_{t}=\ln \left( z_{t}/z_{t}^{*}\right) \).

Consider the Euler equation

$$\begin{aligned} \frac{1}{c_{t}}=\beta \frac{N_{t+1}}{N_{t}}E_{t}\left( \frac{1}{c_{t+1}}(X_{t+1}^{*})^{-1}\left[ 1+\zeta _{t+1}(1+\kappa _{t+1})\frac{y_{t+1}}{k_{t+1}}-\delta _{t+1}\right] \right) \frac{1}{1+\tau _{kt}}, \end{aligned}$$

We can rewrite this expression as

$$\begin{aligned} \frac{1}{c_{t}^{*}}\exp \left( -\widehat{c}_{t}\right) & =\frac{1}{1+\tau _{kt}^{*}+\widehat{\tau }_{kt}}\times \beta E_{t}\left( \frac{1}{c_{t+1}^{*}}\exp \left( -\widehat{c}_{t+1}\right) \left( X_{A,t+1}^{*}\right) ^{-1} \right. \\& \quad\times \left. \left[ 1+(\zeta _{t+1}^{*} +\widehat{\zeta }_{t+1})(1+\kappa _{t+1}^{*}+\widehat{\kappa }_{t+1})\frac{y_{t+1}^{*}}{k_{t+1}^{*}}\exp \left( \widehat{y}_{t+1}-\widehat{k}_{t+1}\right) -\left( \delta _{t+1}^{*}+\widehat{\delta }_{t+1}\right) \right] \right) , \end{aligned}$$

where \(X_{A,t+1}^{*}=A_{t+1}^{*}/A_{t}^{*}\). Logging both sides, and assuming the deviations are small, one gets

$$\begin{aligned} -&\widehat{c}_{t}\approx \ln \left( \lambda _{2,t+1}\right) -\ln \left( 1+\tau _{kt}^{*}+\widehat{\tau }_{kt}\right) -E_{t}\Big \{ \widehat{c}_{t+1}\Big \} \\&+E_{t}\left\{ \ln \left( 1+(\zeta _{t+1}^{*}+\widehat{\zeta }_{t+1})(1+\kappa _{t+1}^{*}+\widehat{\kappa }_{t+1})\lambda _{1,t+1}\exp \left( \widehat{y}_{t+1}-\widehat{k}_{t+1}\right) -\left( \delta _{t+1}^{*}+\widehat{\delta }_{t+1}\right) \right) \right\} , \\ \lambda _{1t}&\equiv \frac{y_{t}^{*}}{k_{t}^{*}};\quad \lambda _{2t}\equiv \beta \frac{c_{t-1}^{*}}{c_{t}^{*}}\left( X_{A,t}^{*}\right) ^{-1}. \end{aligned}$$

Implicitly differentiating around trend values (“stars”, with “hats” set equal to zero), and noting that \(1/\left[ 1+\zeta _{t+1}(1+\kappa _{t+1}^{*})\lambda _{1,t+1}-\delta _{t+1}\right] =\lambda _{2,t+1}/(1+\tau _{kt}^{*})\), we get

$$\begin{aligned} \widehat{c}_{t} & \approx E_{t}\left( \widehat{c}_{t+1}-\lambda _{3,t+1}\left( \frac{1}{\zeta _{t+1}^{*}}\widehat{\zeta }_{t+1}+\widehat{y}_{t+1}-\widehat{k}_{t+1}+\frac{1}{1+\kappa _{t+1}^{*}}\widehat{\kappa }_{t+1}\right) -\frac{\lambda _{2,t+1}}{1+\tau _{kt}^{*}}\widehat{\delta }_{t+1}\right) +\frac{1}{1+\tau _{kt}^{*}}\widehat{\tau }_{kt}, \nonumber \\ \lambda _{3t} & \equiv \frac{\zeta _{t+1}^{*}\lambda _{1,t+1}\lambda _{2,t+1}(1+\kappa _{t+1}^{*})}{1+\tau _{kt}^{*}}. \nonumber \end{aligned}$$

Following Eq. (23), we replace \(\widehat{\tau }_{kt}\) with \(\rho _{k}\widehat{\widetilde{\tau }}_{k,t-1}\).

Next, consider the capital accumulation equation

$$\begin{aligned} X_{t+1}^{*}k_{t+1}=\left( 1-\delta _{t}\right) k_{t}+y_{t}-c_{t}-g_{t}, \end{aligned}$$

which can be rewritten as

$$\begin{aligned} X_{t+1}^{*}k_{t+1}^{*}\exp \left( \widehat{k}_{t+1}\right) =\left( 1-\left( \delta _{t}^{*}+\widehat{\delta }_{t}\right) \right) k_{t}^{*}\exp \left( \widehat{k}_{t}\right) +y_{t}^{*}\exp \left( \widehat{y}_{t}\right) -c_{t}^{*}\exp \left( \widehat{c}_{t}\right) -g_{t}^{*}\exp \left( \widehat{g}_{t}\right) . \end{aligned}$$

Implicit differentiation yields

$$\begin{aligned} X_{t+1}^{*}k_{t+1}^{*}\widehat{k}_{t+1}=k_{t}^{*}\left( 1-\delta _{t}^{*}\right) \widehat{k}_{t}-k_{t}^{*}\widehat{\delta }_{t}+y_{t}^{*}\widehat{y}_{t}-c_{t}^{*}\widehat{c}_{t}-g_{t}^{*}\widehat{g}_{t}, \end{aligned}$$

or

$$\begin{aligned} \lambda _{4,t+1}\widehat{k}_{t+1} & =\left( 1-\delta _{t}^{*}\right) \widehat{k}_{t}+\lambda _{1t}\widehat{y}_{t}-\lambda _{5t}\widehat{c}_{t}-\lambda _{6t}\widehat{g}_{t}-\widehat{\delta }_{t}, \\ \lambda _{4t} & \equiv \frac{k_{t}^{*}}{k_{t+1}^{*}}X_{t}^{*};\quad \lambda _{5t}\equiv \frac{c_{t}^{*}}{k_{t}^{*}};\quad \lambda _{6t}\equiv \frac{g_{t}^{*}}{k_{t}^{*}}. \end{aligned}$$

To fill out these two difference equations, we substitute for output, using

$$\begin{aligned} y_{t}=\left( \frac{1}{\chi }\left( 1-\zeta _{t}\right) \left( 1-\tau _{lt}\right) (1+\ell _{t})\right) ^{\phi _{t}-1}\left( k_{t}^{\zeta _{t}}a_{t}^{1-\zeta _{t}}\right) ^{\phi _{t}}c_{t}^{1-\phi _{t}}. \end{aligned}$$
(30)

Linearizing this equation requires us to consider the effects of the exponent deviations \(\widehat{\phi }_{t}\) and \(\widehat{\zeta }_{t}\). To see how this works, consider another expression for output:

$$\begin{aligned} y_{t}=k_{t}^{\zeta _{t}}(a_{t}l_{t})^{1-\zeta _{t}}. \end{aligned}$$

This equality can be rewritten as

$$\begin{aligned} \frac{y_{t}}{y_{t}^{*}}=\frac{k_{t}^{\zeta _{t}^{*}+\widehat{\zeta }_{t}}(a_{t}l_{t})^{1-(\zeta _{t}^{*}+\widehat{\zeta }_{t})}}{\left( k_{t}^{*}\right) ^{\zeta _{t}^{*}}(a_{t}^{*}l_{t}^{*})^{1-\zeta _{t}^{*}}}=\left( \frac{k_{t}}{k_{t}^{*}}\right) ^{\zeta _{t}^{*}}\left( \frac{a_{t}l_{t}}{a_{t}^{*}l_{t}^{*}}\right) ^{1-\zeta _{t}^{*}}k_{t}^{\widehat{\zeta }_{t}}(a_{t}l_{t})^{-\widehat{\zeta }_{t}}, \end{aligned}$$

and taking logs yields

$$\begin{aligned} \widehat{y}_{t} & = \zeta _{t}^{*}\widehat{k}_{t}+(1-\zeta _{t}^{*})(\widehat{a}_{t}+\widehat{l}_{t})+\widehat{\zeta }_{t}\ln \left( k_{t}\right) -\widehat{\zeta }_{t}\left( \ln (l_{t})+\ln (a_{t})\right) \\ & \approx \zeta _{t}^{*}\widehat{k}_{t}+(1-\zeta _{t}^{*})(\widehat{a}_{t}+\widehat{l}_{t})+\left[ \ln \left( k_{t}^{*}\right) -\ln (l_{t}^{*})\right] \widehat{\zeta }_{t}, \end{aligned}$$

as \(\ln (a_{t}^{*})=0\).

To apply this approach to Eq. (30), we log both sides and implicitly differentiate:

$$\begin{aligned} \widehat{y}_{t} & = \phi _{t}^{*}\zeta _{t}^{*}\widehat{k}_{t}+\phi _{t}^{*}(1-\zeta _{t}^{*})\widehat{a}_{t}+(1-\phi _{t}^{*})\left( \widehat{c}_{t}+\frac{1}{1-\zeta _{t}^{*}}\widehat{\zeta }_{t}+\frac{1}{1-\tau _{lt}^{*}}\widehat{\tau }_{lt}-\frac{1}{1+\ell _{t}^{*}}\widehat{\ell }_{t}\right) \\& \quad +\phi _{t}^{*}\ln \left( \frac{k_{t}^{*}}{a_{t}^{*}}\right) \widehat{\zeta }_{t}+\left[ \zeta _{t}^{*}\ln (k_{t}^{*})+(1-\zeta _{t}^{*})\ln (a_{t}^{*})+\ln \left( \frac{1}{\chi c_{t}^{*}}\left( 1-\zeta _{t}^{*}\right) \left( 1-\tau _{lt}^{*}\right) (1+\ell _{t}^{*})\right) \right] \widehat{\phi }_{t} \\ & = \phi _{t}^{*}\zeta _{t}^{*}\widehat{k}_{t}+\phi _{t}^{*}(1-\zeta _{t}^{*})\widehat{a}_{t}+(1-\phi _{t}^{*})\left( \widehat{c}_{t}+\frac{1}{1-\tau _{lt}^{*}}\widehat{\tau }_{lt}-\frac{1}{1+\ell _{t}^{*}}\widehat{\ell }_{t}\right) \\& \quad +\left[ \frac{1-\phi _{t}^{*}}{1-\zeta _{t}^{*}}+\phi _{t}^{*}\ln \left( k_{t}^{*}\right) \right] \widehat{\zeta }_{t}+\left[ \zeta _{t}^{*}\ln (k_{t}^{*})+\ln \left( \frac{1}{\chi c_{t}^{*}}\left( 1-\zeta _{t}^{*}\right) \left( 1-\tau _{lt}^{*}\right) (1+\ell _{t}^{*})\right) \right] \widehat{\phi }_{t}. \end{aligned}$$

Next, we substitute for the components of \(\widehat{a}_{t}\), \(\widehat{\kappa }_{t}, \widehat{\ell }_{t}, \widehat{\zeta }_{t}\) and \(\widehat{\phi }_{t}\). Consider first the expression for total factor productivity, \(\widehat{a}_{t}\). It follows from Eq. (10) that

$$\begin{aligned} \frac{A_{t}^{1-(\zeta _{t}^{*}+\widehat{\zeta }_{t})}}{\left( A_{t}^{*}\right) ^{1-\zeta _{t}^{*}}}\equiv \frac{A_{ft}A_{at}^{\psi _{t}^{*}+\widehat{\psi }_{t}}A_{mt}^{\eta _{t}^{*}+\widehat{\eta }_{t}}A_{st}^{\theta _{t}^{*}+\widehat{\theta }_{t}}\Omega _{t}\Upsilon _{t}\Delta _{t}}{A_{ft}^{*}\left( A_{at}^{*}\right) ^{\psi _{t}^{*}}\left( A_{mt}^{*}\right) ^{\eta _{t}^{*}}\left( A_{st}^{*}\right) ^{\theta _{t}^{*}}\Omega _{t}^{*}\Upsilon _{t}^{*}\Delta _{t}^{*}}. \end{aligned}$$

Taking logs yields

$$\begin{aligned} \left( 1-\zeta _{t}^{*}\right) \widehat{a}_{t}-\widehat{\zeta }_{t}\ln \left( A_{t}\right) & = \psi _{t}^{*}\widehat{a}_{at}+\eta _{t}^{*}\widehat{a}_{mt}+\theta _{t}^{*}\widehat{a}_{st}+\widehat{\psi }_{t}\ln \left( A_{at}\right) +\widehat{\eta }_{t}\ln \left( A_{mt}\right) +\widehat{\theta }_{t}\ln \left( A_{st}\right) \\& \quad +\, \widehat{a}_{ft}+\widehat{\Omega }_{t}+\widehat{\Upsilon }_{t}+\widehat{\Delta }_{t}, \end{aligned}$$

or

$$\begin{aligned} \widehat{a}_{t} & \approx \frac{1}{1-\zeta _{t}^{*}}\left( \psi _{t}^{*}\widehat{a}_{at}+\eta _{t}^{*}\widehat{a}_{mt}+\theta _{t}^{*}\widehat{a}_{st}+\ln \left( A_{at}^{*}\right) \widehat{\psi }_{t}+\ln \left( A_{mt}^{*}\right) \widehat{\eta }_{t}+\ln \left( A_{st}^{*}\right) \widehat{\theta }_{t}+\ln \left( A_{t}^{*}\right) \widehat{\zeta }_{t}\right. \\& \quad \left. +\, \widehat{a}_{ft}+\widehat{\Omega }_{t}+\widehat{\Upsilon }_{t}+\widehat{\Delta }_{t}\right) . \end{aligned}$$

Continuing, it follows from the definition of \(\Omega _{t}\) that:

$$\begin{aligned} \frac{\Omega _{t}}{\Omega _{t}^{*}}\equiv \frac{\left( 1+\kappa _{mt}^{*}+\widehat{\kappa }_{mt}\right) ^{\left( \eta _{t}^{*}+\widehat{\eta }_{t}\right) \mu }\left( 1+\kappa _{st}^{*}+\widehat{\kappa }_{st}\right) ^{\left( \theta _{t}^{*}+\widehat{\theta }_{t}\right) \sigma }}{\left( 1+\kappa _{t}^{*}+\widehat{\kappa }_{t}\right) ^{\zeta _{t}^{*}+\widehat{\zeta }_{t}}}\cdot \frac{\left( 1+\kappa _{t}^{*}\right) ^{\zeta _{t}^{*}}}{\left( 1+\kappa _{mt}^{*}\right) ^{\eta _{t}^{*}\mu }\left( 1+\kappa _{st}^{*}\right) ^{\theta _{t}^{*}\sigma }}. \end{aligned}$$

Taking logs, and then implicitly differentiating, yields

$$\begin{aligned} \widehat{\Omega }_{t} & = \eta _{t}^{*}\mu \ln \left( \frac{1+\kappa _{mt}^{*}+\widehat{\kappa }_{mt}}{1+\kappa _{mt}^{*}}\right) +\theta _{t}^{*}\sigma \ln \left( \frac{1+\kappa _{st}^{*}+\widehat{\kappa }_{st}}{1+\kappa _{st}^{*}}\right) -\zeta _{t}^{*}\ln \left( \frac{1+\kappa _{t}^{*}+\widehat{\kappa }_{t}}{1+\kappa _{t}^{*}}\right) \\& \quad +\widehat{\eta }_{t}\mu \ln \left( 1+\kappa _{mt}^{*}+\widehat{\kappa }_{mt}\right) +\widehat{\theta }_{t}\sigma \ln \left( 1+\kappa _{st}^{*}+\widehat{\kappa }_{st}\right) -\widehat{\zeta }_{t}\ln \left( 1+\kappa _{t}^{*}+\widehat{\kappa }_{t}\right) \\ & \approx \frac{\eta _{t}^{*}\mu }{1+\kappa _{mt}^{*}}\widehat{\kappa }_{mt}+\frac{\theta _{t}^{*}\sigma }{1+\kappa _{st}^{*}}\widehat{\kappa }_{st}-\frac{\zeta _{t}^{*}}{1+\kappa _{t}^{*}}\widehat{\kappa }_{t} \\& \quad +\mu \ln \left( 1+\kappa _{mt}^{*}\right) \widehat{\eta }_{t}+\sigma \ln \left( 1+\kappa _{st}^{*}\right) \widehat{\theta }_{t}-\ln \left( 1+\kappa _{t}^{*}\right) \widehat{\zeta }_{t}. \end{aligned}$$

Similarly,

$$\begin{aligned} \widehat{\Upsilon }_{t} & \approx \frac{\eta _{t}^{*}(1-\mu )}{1+\ell _{mt}^{*}}\widehat{\ell }_{mt}+\frac{\theta _{t}^{*}(1-\sigma )}{1+\ell _{st}^{*}}\widehat{\ell }_{st}-\frac{1-\zeta _{t}^{*}}{1+\ell _{t}^{*}}\widehat{\ell }_{t} \\& \quad +(1-\mu )\ln \left( 1+\ell _{mt}^{*}\right) \widehat{\eta }_{t}+(1-\sigma )\ln \left( 1+\ell _{st}^{*}\right) \widehat{\theta }_{t}+\ln \left( 1+\ell _{t}^{*}\right) \widehat{\zeta }_{t}. \end{aligned}$$

Finally, it follows from Eqs. (10) and (18) that

$$\begin{aligned} \Delta _{t}A_{ft}\equiv \left( \alpha ^{\alpha }\left( 1-\alpha \right) ^{1-\alpha }\right) ^{\psi _{t}}\left( \mu ^{\mu }\left( 1-\mu \right) ^{1-\mu }\right) ^{\eta _{t}}\left( \sigma ^{\sigma }\left( 1-\sigma \right) ^{1-\sigma }\right) ^{\theta _{t}}\zeta _{t}^{-\zeta _{t}}(1-\zeta _{t})^{\zeta _{t}-1}, \end{aligned}$$

so that

$$\begin{aligned} \, \widehat{a}_{ft}+\widehat{\Delta }_{t} & \approx \ln \left( \alpha ^{\alpha }\left( 1-\alpha \right) ^{1-\alpha }\right) \widehat{\psi }_{t}+\ln \left( \mu ^{\mu }\left( 1-\mu \right) ^{1-\mu }\right) \widehat{\eta }_{t}+\ln \left( \sigma ^{\sigma }\left( 1-\sigma \right) ^{1-\sigma }\right) \widehat{\eta }_{t} \\& \quad -\zeta _{t}^{*}\frac{1}{\zeta _{t}^{*}}\widehat{\zeta }_{t}-\widehat{\zeta }_{t}\ln \left( \zeta _{t}^{*}\right) +(\zeta _{t}^{*}-1)\frac{1}{1-\zeta _{t}^{*}}\left( -\widehat{\zeta }_{t}\right) +\widehat{\zeta }_{t}\ln \left( 1-\zeta _{t}^{*}\right) \\ & = \ln \left( \alpha ^{\alpha }\left( 1-\alpha \right) ^{1-\alpha }\right) \widehat{\psi }_{t}+\ln \left( \mu ^{\mu }\left( 1-\mu \right) ^{1-\mu }\right) \widehat{\eta }_{t}+\ln \left( \sigma ^{\sigma }\left( 1-\sigma \right) ^{1-\sigma }\right) \widehat{\eta }_{t} \\& \quad +\ln \left( \frac{1-\zeta _{t}^{*}}{\zeta _{t}^{*}}\right) \widehat{\zeta }_{t}. \end{aligned}$$

Next, we consider the sectoral distortions, \(\kappa _{t}\) and \(\ell _{t}\). Recall the capital distortion:

$$\begin{aligned} \kappa _{t}=\frac{1}{\zeta _{t}}\left[ \eta _{t}\mu \kappa _{mt}+\theta _{t}\sigma \kappa _{st}\right] . \end{aligned}$$

Implicit differentiation yields

$$\begin{aligned} \widehat{\kappa }_{t} & \approx \frac{1}{\zeta _{t}^{*}}\left[ \mu \kappa _{mt}^{*}\widehat{\eta }_{t}+\eta _{t}^{*}\mu \widehat{\kappa }_{mt}+\sigma \kappa _{st}^{*}\widehat{\theta }_{t}+\theta _{t}^{*}\sigma \widehat{\kappa }_{st}\right] -\frac{1}{\left( \zeta _{t}^{*}\right) ^{2}}\left[ \eta _{t}^{*}\mu \kappa _{mt}^{*}+\theta _{t}^{*}\sigma \kappa _{st}^{*}\right] \widehat{\zeta }_{t} \\ & = \frac{1}{\zeta _{t}^{*}}\left[ \mu \kappa _{mt}^{*}\widehat{\eta }_{t}+\eta _{t}^{*}\mu \widehat{\kappa }_{mt}+\sigma \kappa _{st}^{*}\widehat{\theta }_{t}+\theta _{t}^{*}\sigma \widehat{\kappa }_{st}-\kappa _{t}^{*}\widehat{\zeta }_{t}\right] . \end{aligned}$$

Similarly

$$\begin{aligned} \widehat{\ell }_{t}\approx \frac{1}{1-\zeta _{t}^{*}}\left[ (1-\mu )\ell _{mt}^{*}\widehat{\eta }_{t}+\eta _{t}^{*}(1-\mu )\widehat{\ell }_{mt}+(1-\sigma )\ell _{st}^{*}\widehat{\theta }_{t}+\theta _{t}^{*}(1-\sigma )\widehat{\ell }_{st}+\ell _{t}^{*}\widehat{\zeta }_{t}\right] . \end{aligned}$$

Finally, we express the composite parameters \(\zeta _{t}\) and \(\phi _{t}\) as functions of the share parameters \(\psi _{t}\), \(\eta _{t}\) and \(\theta _{t}\). Recall that

$$\begin{aligned} \zeta _{t} & \equiv \alpha \psi _{t}+\mu \eta _{t}+\sigma \theta _{t}, \\ \phi _{t} & \equiv \frac{1+\gamma }{\gamma +\zeta _{t}}, \\ 1 & = \psi _{t}+\eta _{t}+\theta _{t}, \end{aligned}$$

yielding

$$\begin{aligned} \widehat{\zeta }_{t} & \equiv \alpha \widehat{\psi }_{t}+\mu \widehat{\eta }_{t}+\sigma \widehat{\theta }_{t}, \\ \widehat{\phi }_{t} & \equiv -\frac{1+\gamma }{\left( \gamma +\zeta _{t}^{*}\right) ^{2}}\widehat{\zeta }_{t}, \\ \widehat{\eta }_{t} & = -\widehat{\psi }_{t}-\widehat{\theta }_{t}. \end{aligned}$$

1.5 Solving time-varying linear expectational difference equations

Our approach most closely follows that of Klein (2000) (and to a lesser extent Sims 2002), although we use the eigenvalue-eigenvector decomposition introduced by Blanchard and Kahn (1980) (as well as their notation), rather than the generalized Schur decomposition. We also incorporate elements of the MDS approaches used by Broze et al. (1985), Farmer (1993) and Farmer and Guo (1994), as well as insights from King et al. (2002).

1.5.1 The basic solution

Consider the following system:

$$\begin{aligned} E_{t}\left( {\mathbf {v}}_{t+1}\right) ={\mathbf {A}}_{t}{\mathbf {v}}_{t},\quad t=0,1,2..., \end{aligned}$$
(31)

where \({\mathbf {v}}_{t}\) is an \((n\times 1)\) vector, \({\mathbf {A}}_{t}\) is an \((n\times n)\) time-dependent matrix, and \(E_{t}\left( {\mathbf {.}}\right) \) is the usual conditional expectations operator. The vector \({\mathbf {v}}_{t}\) can be decomposed into the \((n_{1}\times 1)\) control vector \({\mathbf {x}}_{t}\) and the \((n_{2}\times 1)\) state vector \({\mathbf {p}}_{t}\). In particular, \({\mathbf {p}}_{t}\) is restricted by

$$\begin{aligned}&{\mathbf {d}}_{t+1}\equiv {\mathbf {p}}_{t+1}-E_{t}({\mathbf {p}}_{t+1})\,\text{given},\quad t=0,1,2\ldots,\\&{\mathbf {p}}_{0}\,\text {given},\nonumber\end{aligned}$$
(32)

where \(\left\{ {\mathbf {d}}_{t+1}\right\} _{t=0}^{\infty }\) is a covariance stationary Martingale difference sequence. In contrast, \({\mathbf {x}}_{t}\) needs only to obey some standard boundedness conditions; \({\mathbf {g}}_{t+1}\equiv {\mathbf {x}}_{t+1}-E_{t}\left( {\mathbf {x}}_{t+1}\right) \) is otherwise unrestricted. Using these definitions, we can rewrite Eq. (31) as

$$\begin{aligned} \left( \begin{array}{c} {\mathbf {x}}_{t+1} \\ {\mathbf {p}}_{t+1}\end{array}\right) ={\mathbf {A}}_{t}\left( \begin{array}{c} {\mathbf {x}}_{t} \\ {\mathbf {p}}_{t}\end{array}\right) +\left( \begin{array}{c} {\mathbf {g}}_{t+1} \\ {\mathbf {d}}_{t+1}\end{array}\right) ,\quad t=0,1,2\ldots , \end{aligned}$$
(33)

subject to the restrictions in Eq. (32). In our case, the control vector \({\mathbf {x}}_{t}\) has one variable, the consumption deviation (\(\widehat{c}_{t}\)), so that \(n_{1}=1\). The remaining variables, the capital and wedge deviations, are elements of \({\mathbf {p}}_{t}\).

The next step is to diagonalize \({\mathbf {A}}_{t}\):

$$\begin{aligned} {\mathbf {A}}_{t}={\mathbf {B}}_{t}{\mathbf {J}}_{t}{\mathbf {C}}_{t}, \end{aligned}$$

where: the matrix \({\mathbf {B}}_{t}\) contains the eigenvectors of \({\mathbf {A}}_{t}\); the matrix \({\mathbf {J}}_{t}\) is a diagonal matrix holding the associated eigenvalues; and \({\mathbf {C}}_{t}={\mathbf {B}}_{t}^{-1}\). (In our case, a simple diagonalization always works). Assume that the eigenvalues are sorted by size in descending order, and let \(m_{1}\) denote the number of eigenvalues of magnitude greater than 1. In the standard saddle-path case, \(m_{1}=n_{1}\). We will hold this assumption throughout our analysis; readers interested in other configurations can consult the references listed above. With saddle-path stability, we can partition \({\mathbf {B}}_{t}\), \({\mathbf {J}}_{t}\), and \({\mathbf {C}}_{t},\) as:

$$\begin{aligned} {\mathbf {B}}_{t} & = \left[ \begin{array}{cc} \underset{\left( n\times n_{1}\right) }{{\mathbf {B}}_{1t}}&\underset{\left( n\times n_{2}\right) }{{\mathbf {B}}_{2t}}\end{array}\right] \equiv \left[ \begin{array}{cc} \underset{\left( n_{1}\times n_{1}\right) }{{\mathbf {B}}_{11t}} & \underset{\left( n_{1}\times n_{2}\right) }{{\mathbf {B}}_{12t}} \\ \underset{\left( n_{2}\times n_{1}\right) }{{\mathbf {B}}_{21t}} & \underset{\left( n_{2}\times n_{2}\right) }{{\mathbf {B}}_{22t}}\end{array}\right] , \\ {\mathbf {J}}_{t} & = \left[ \begin{array}{cc} \underset{\left( n_{1}\times n_{1}\right) }{{\mathbf {J}}_{1t}} & \underset{\left( n_{1}\times n_{2}\right) }{{\mathbf {0}}} \\ \underset{\left( n_{2}\times n_{1}\right) }{{\mathbf {0}}} & \underset{\left( n_{2}\times n_{2}\right) }{{\mathbf {J}}_{2t}}\end{array}\right] , \\ {\mathbf {C}}_{t} & = \left[ \begin{array}{c} \underset{\left( n_{1}\times n\right) }{{\mathbf {C}}_{1t}} \\ \underset{\left( n_{2}\times n\right) }{{\mathbf {C}}_{2t}}\end{array}\right] . \end{aligned}$$

Premultiplying Eq. (33) by \({\mathbf {C}}_{t}\) yields the transformed system

$$\begin{aligned} \widetilde{{\mathbf {w}}}_{t+1}&\equiv \left( \begin{array}{c} \widetilde{{\mathbf {y}}}_{t+1} \\ \widetilde{{\mathbf {q}}}_{t+1}\end{array}\right) =\left[ \begin{array}{cc} {\mathbf {J}}_{1t} & {\mathbf {0}} \\ {\mathbf {0}} & {\mathbf {J}}_{2t}\end{array}\right] \left( \begin{array}{c} {\mathbf {y}}_{t} \\ {\mathbf {q}}_{t}\end{array}\right) +\left( \begin{array}{c} \widetilde{{\mathbf {h}}}_{t+1} \\ \widetilde{{\mathbf {e}}}_{t+1}\end{array}\right) ,\quad t=0,1,2..., \\ {\mathbf {y}}_{t}&={\mathbf {C}}_{1t}{\mathbf {v}}_{t};\quad {\mathbf {q}}_{t}={\mathbf {C}}_{2t}{\mathbf {v}}_{t}, \nonumber \\ \widetilde{{\mathbf {y}}}_{t+1}&={\mathbf {C}}_{1t}{\mathbf {v}}_{t+1};\quad \widetilde{{\mathbf {q}}}_{t}={\mathbf {C}}_{2t}{\mathbf {v}}_{t+1}, \nonumber \\ \widetilde{{\mathbf {h}}}_{t+1}&={\mathbf {C}}_{1t}\left( \begin{array}{c} {\mathbf {g}}_{t+1} \\ {\mathbf {d}}_{t+1}\end{array}\right) ;\quad \widetilde{{\mathbf {e}}}_{t+1}={\mathbf {C}}_{2t}\left( \begin{array}{c} {\mathbf {g}}_{t+1} \\ {\mathbf {d}}_{t+1}\end{array}\right) . \nonumber \end{aligned}$$
(34)

Because the timing of the transformation is important, we use tildes to denote transformed variables with time “mismatches”.

Because the elements of \({\mathbf {J}}_{1t}\) are bigger than 1 in magnitude, the non-explosive solution to the first row of Eq. (34) is to set

$$\begin{aligned} {\mathbf {y}}_{t}=\widetilde{{\mathbf {h}}}_{t+1}=\widetilde{{\mathbf {y}}}_{t+1}={\mathbf {0.}} \end{aligned}$$

It immediately follows that

$$\begin{aligned} {\mathbf {v}}_{t}&= {\mathbf {B}}_{t}{\mathbf {w}}_{t}= {\mathbf {B}}_{2t}{\mathbf {w}}_{t}, \\ {\mathbf {v}}_{t+1}&={\mathbf {B}}_{2t}\widetilde{{\mathbf {w}}}_{t+1}, \\ \left( \begin{array}{c} {\mathbf {f}}_{t+1} \\ {\mathbf {d}}_{t+1}\end{array}\right)&={\mathbf {B}}_{2t}\widetilde{{\mathbf {e}}}_{t+1}=\left[ \begin{array}{c} {\mathbf {B}}_{12t} \\ {\mathbf {B}}_{22t}\end{array}\right] \widetilde{{\mathbf {e}}}_{t+1}. \end{aligned}$$

But because \({\mathbf {d}}_{t+1}\) is given, it must be the case that

$$\begin{aligned} {\mathbf {B}}_{22t}\widetilde{{\mathbf {e}}}_{t+1} & = {\mathbf {d}}_{t+1}, \\ \widetilde{{\mathbf {e}}}_{t+1} & = {\mathbf {B}}_{22t}^{-1}{\mathbf {d}}_{t+1}, \end{aligned}$$

and

$$\begin{aligned} \left( \begin{array}{c} {\mathbf {f}}_{t+1} \\ {\mathbf {d}}_{t+1}\end{array}\right) & = {\mathbf {H}}_{t}{\mathbf {d}}_{t+1}, \\ {\mathbf {H}}_{t} & \equiv \left[ \begin{array}{c} {\mathbf {B}}_{12t}{\mathbf {B}}_{22t}^{-1} \\ {\mathbf {I}}_{n_{2}}\end{array}\right] , \nonumber \end{aligned}$$
(35)

where \({\mathbf {I}}_{n_{2}}\) is an identity matrix of size \(n_{2}\).

1.5.2 The effects of time variation

Equation (35) implies that the innovation to the control variable \({\mathbf {x}}_{t}\) is a linear function of the innovations to the state variable \({\mathbf {p}}_{t}\). The same logic, however, applies to the variables \({\mathbf {x}}_{t}\) and \({\mathbf {p}}_{t}\) themselves. The fact that \({\mathbf {p}}_{t}\) is pre-determined at time t, along with the non-explosiveness restriction \({\mathbf {y}}_{t}={\mathbf {0}}\) , implies that

$$\begin{aligned} \left( \begin{array}{c} {\mathbf {x}}_{t} \\ {\mathbf {p}}_{t}\end{array}\right) ={\mathbf {H}}_{t}{\mathbf {p}}_{t}. \end{aligned}$$
(36)

Comparing Eqs. (35) and (36) reveals a timing inconsistency: time-t innovations are “stabilized” using time-\(t-1\) coefficients, while the variables themselves are stabilized using time-t coefficients. To see how this plays out, consider the system:

$$\begin{aligned} \left( \begin{array}{c} {\mathbf {x}}_{t+1} \\ {\mathbf {p}}_{t+1}\end{array}\right) ={\mathbf {A}}_{t}\left( \begin{array}{c} {\mathbf {x}}_{t} \\ {\mathbf {p}}_{t}\end{array}\right) +{\mathbf {H}}_{t}{\mathbf {d}}_{t+1}. \end{aligned}$$
(37)

Suppose further that: \({\mathbf {v}}_{0}=\) \({\mathbf {0}}\); \({\mathbf {d}}_{t}={\mathbf {0}}\), \(\forall t\ne 1\); and \({\mathbf {d}}_{1}\ne {\mathbf {0}}\). This yields:

$$\begin{aligned} {\mathbf {v}}_{0} & = {\mathbf {0}}, \\ {\mathbf {v}}_{1} & = {\mathbf {H}}_{0}{\mathbf {d}}_{1}, \\ {\mathbf {v}}_{2} & = {\mathbf {A}}_{1}{\mathbf {v}}_{1}={\mathbf {A}}_{1}{\mathbf {H}}_{0}{\mathbf {d}}_{1}, \\ {\mathbf {v}}_{3} & = {\mathbf {A}}_{2}{\mathbf {A}}_{1}{\mathbf {H}}_{0}{\mathbf {d}}_{1} \end{aligned}$$

But it should also be the case that

$$\begin{aligned} {\mathbf {v}}_{2}={\mathbf {A}}_{1}{\mathbf {H}}_{1}{\mathbf {p}}_{1}={\mathbf {A}}_{1}{\mathbf {H}}_{1}{\mathbf {d}}_{1}. \end{aligned}$$

Following Klein (2000), we can show that Eq. (36) generates a bounded solution. In particular,

$$\begin{aligned} {\mathbf {A}}_{t}{\mathbf {H}}_{t} & = \left[ \begin{array}{cc} {\mathbf {B}}_{1t}&{\mathbf {B}}_{2t}\end{array}\right] \left[ \begin{array}{cc} {\mathbf {J}}_{1t} & {\mathbf {0}} \\ {\mathbf {0}} & {\mathbf {J}}_{2t}\end{array}\right] \left[ \begin{array}{c} {\mathbf {C}}_{1t} \\ {\mathbf {C}}_{2t}\end{array}\right] {\mathbf {H}}_{t} \\ & = \left( {\mathbf {B}}_{1t}{\mathbf {J}}_{1t}{\mathbf {C}}_{1t}+{\mathbf {B}}_{2t}{\mathbf {J}}_{2t}{\mathbf {C}}_{2t}\right) {\mathbf {H}}_{t}. \end{aligned}$$

Moreover,

$$\begin{aligned} {\mathbf {H}}_{t}=\left[ \begin{array}{c} {\mathbf {B}}_{12t}{\mathbf {B}}_{22t}^{-1} \\ {\mathbf {I}}_{n_{2}}\end{array}\right] =\left[ \begin{array}{c} {\mathbf {B}}_{12t} \\ {\mathbf {B}}_{22t}\end{array}\right] {\mathbf {B}}_{22t}^{-1}={\mathbf {B}}_{2t}{\mathbf {B}}_{22t}^{-1}. \end{aligned}$$

As a result,

$$\begin{aligned} {\mathbf {A}}_{t}{\mathbf {H}}_{t} & = \left( {\mathbf {B}}_{1t}{\mathbf {J}}_{1t}{\mathbf {C}}_{1t}+{\mathbf {B}}_{2t}{\mathbf {J}}_{2t}{\mathbf {C}}_{2t}\right) {\mathbf {B}}_{2t}{\mathbf {B}}_{22t}^{-1} \\ & = \left( {\mathbf {B}}_{1t}{\mathbf {J}}_{1t}{\mathbf {0}}+{\mathbf {B}}_{2t}{\mathbf {J}}_{2t}{\mathbf {I}}_{n_{2}}\right) {\mathbf {B}}_{22t}^{-1} \\ & = {\mathbf {B}}_{2t}{\mathbf {J}}_{2t}{\mathbf {B}}_{22t}^{-1}, \end{aligned}$$

because, as noted by Klein (2000, p. 1418), \({\mathbf {C}}_{t}{\mathbf {B}}_{t}={\mathbf {I}}\).

Note that

$$\begin{aligned} {\mathbf {A}}_{t}{\mathbf {H}}_{t}={\mathbf {A}}_{t}^{*}{\mathbf {H}}_{t}, \end{aligned}$$

where the “stabilized” transition matrix \({\mathbf {A}}_{t}^{*}\) has been purged of its explosive eigenvalues:

$$\begin{aligned} {\mathbf {A}}_{t}^{*} & = \left[ \begin{array}{cc} {\mathbf {B}}_{1t}&{\mathbf {B}}_{2t}\end{array}\right] \left[ \begin{array}{cc} {\mathbf {0}} & {\mathbf {0}} \\ {\mathbf {0}} & {\mathbf {J}}_{2t}\end{array}\right] \left[ \begin{array}{c} {\mathbf {C}}_{1t} \\ {\mathbf {C}}_{2t}\end{array}\right] \\ & = {\mathbf {B}}_{2t}{\mathbf {J}}_{2t}{\mathbf {C}}_{2t} . \end{aligned}$$

In short, applying Eq. (36) is equivalent to updating Eq. (33) with a non-explosive transition matrix. This result does not hold if we use \({\mathbf {H}}_{t-1}\) from Eq. (35), as \({\mathbf {A}}_{t}\) contains \({\mathbf {C}}_{1t}\), while \({\mathbf {H}}_{t-1}\) contains \({\mathbf {B}}_{2,t-1}\). On the other hand, using Eq. (35) bests captures the transition dynamics in effect at time t. Our solution is this:

  1. 1.

    Given \({\mathbf {p}}_{t}\), use Eq. (36) to find \({\mathbf {x}} _{t}\).

  2. 2.

    Given \(\left( {\mathbf {x}}_{t}^{\prime },{\mathbf {p}}_{t}^{\prime }\right) ^{\prime }\), use the bottom \(n_{2}\) rows of Eqs. (33) or (37) to find \({\mathbf {p}}_{t+1}\). Return to step 1.

Using this approach means that \({\mathbf {x}}_{t+1}\) is not entirely consistent with the dynamics implied by Eqs. (33) or (37). In our context, this means that consumption does not perfectly satisfy the linearized Euler equation. The error appears to be less than 1 % of consumption, however, which is small relative to some observed parameter changes.

1.6 Estimated and projected trends

See Figs. 17, 18, 19 and 20.

Fig. 17
figure 17

Estimated and projected trends: sectoral shares

Fig. 18
figure 18

Estimated and projected trends: sector-specific total factor productivity

Fig. 19
figure 19

Estimated and projected trends: capital and labor market distortions

Fig. 20
figure 20

Estimated and projected trends: fiscal policies and depreciation rate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, J.B., Sahu, S. Transition accounting for India in a multi-sector dynamic general equilibrium model. Econ Change Restruct 50, 299–339 (2017). https://doi.org/10.1007/s10644-016-9190-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10644-016-9190-1

Keywords

Navigation