Skip to main content

Advertisement

Log in

Stomach content and stable isotopes reveal an ontogenetic dietary shift of young-of-the-year scalloped hammerhead sharks (Sphyrna lewini) inhabiting coastal nursery areas

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Sphyrna lewini is a placental viviparous shark that uses coastal nursery areas in Jalisco, Mexico, where pups stay 4–12 months. Changes in size or swimming speed may be reflected in diet composition. The main objectives of this study were as follows: (1) analyze the differences in trophic ecology of juvenile S. lewini from coastal nursery areas of Jalisco by sex and size, through stomach content and stable isotope analyses; and (2) analyze changes in muscle and liver δ15N and δ13C values with shark size. Samples were collected from the artisanal fishery from September 2013 to December 2016. Three size classes were compared: neonates, stretched total length (STL) ≤ 75 cm, and STL > 75 cm (75–100 cm). Bony fishes were the most important group in all size classes, and the importance of shrimps decreased with STL. Significant differences in diet composition were found between neonates and STL > 75 cm, which showed the lowest niche overlap (0.32). STL ≤ 75 cm showed the largest niche width (0.75). The δ15N muscle and liver values declined with total length, reflecting the maternal isotopic signal. No differences in liver δ13C values were observed among size classes, but larger size class showed higher muscle δ13C values. Both isotope and stomach content analyses classified all sharks as tertiary consumers, but the trophic position (TP) estimated using δ15N was higher in neonates. No significant differences in the diet and TP were observed between sexes. The liver C:N ratio decreased sharply with STL up to 55 cm, from which increased smoothly, reflecting the lipid reserves consumed during their neonatal stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alejo-Plata C, Ramos-Carrillo S and Cruz-Ruiz JL (2006) La pesquería artesanal del tiburón en Salina Cruz, Oaxaca, México. Ciencia y Mar 30: 37–51.

  • Alonso MK, Crespo EA, García NA, Pedraza SN, Mariotti PA, Mora NJ (2002) Fishery and ontogenetic driven changes in the diet of the spiny dogfish, Squalus acanthias, in Patagonian waters, Argentina. Environ Biol Fishes 63:193–202

    Google Scholar 

  • Anislado-Tolentino V (2008) Demografía y pesquería del tiburón martillo, Sphyrna lewini, (Griffith y Smith, 1834) (Pisces: Elasmobranchii) en dos provincias oceanográficas del Pacífico mexicano. Dissertation, Universidad Nacional Autónoma de México.

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  PubMed  Google Scholar 

  • Borrell A, Cardona L, Kumarran RP, Aguilar A (2011) Trophic ecology of elasmobranchs caught off Gujarat, India, as inferred from stable isotopes. ICES J Mar Sci 68:547–554. https://doi.org/10.1093/icesjms/fsq170

    Article  Google Scholar 

  • Brown SC, Bizzarro JJ, Cailliet GM, Ebert DA (2012) Breaking with tradition: redefining measures for diet description with a case study of the Aleutian skate Bathyraja aleutica (Gilbert 1896). Environ Biol Fishes 95:3–20. https://doi.org/10.1007/s10641-011-9959-z

    Article  Google Scholar 

  • Bush A (2003) Diet and diel feeding periodicity of juvenile scalloped hammerhead sharks, Sphyrna lewini, in Kāne´ohe Bay, Ō´ahu, Hawai´i. Environ Biol Fishes 67:1–11

    Google Scholar 

  • Carlisle AB, Kim SL, Semmens BX, Madigan DJ, Jorgensen SJ, Perle CR, Anderson SD, Chapple TK, Kanive PE, Block BA (2012) Using stable isotope analysis to understand the migration and trophic ecology of northeastern Pacific white sharks (Carcharodon carcharias). PLoS One. https://doi.org/10.1371/journal.pone.0030492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson JK, Ribera MM, Conrath CL, Heupel MR, Burgess GH (2010) Habitat use and movement patterns of bull sharks Carcharhinus leucas determined using pop-up satellite archival tags. J Fish Biol 77:661–675. https://doi.org/10.1111/j.1095-8649.2010.02707.x

    Article  CAS  PubMed  Google Scholar 

  • Caut S, Jowers MJ, Michel L, Lepoint G, Fisk AT (2013) Diet-and tissue-specific incorporation of isotopes in the shark Scyliorhinus stellaris, a North Sea mesopredator. Mar Ecol Prog Ser 492:185–198. https://doi.org/10.3354/meps10478

    Article  CAS  Google Scholar 

  • Cherel Y, Koubbi P, Giraldo C, Penot F, Tavernier E, Moteki M, Ozouf-Costaz C, Causse R, Chartier A, Hosie G (2011) Isotopic niches of fishes in coastal, neritic and oceanic waters off Adélie land, Antarctica. Polar Sci 5:286–297

    Google Scholar 

  • Christensen V, Pauly D (1992) ECOPATH II - a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol Modell 61:169–185

    Google Scholar 

  • Clarke TA (1971) The Ecology of the Scalloped Hammerhead Shark, Sphyrna lewini, in Hawaii. Pacific Sci 25:133–144

    Google Scholar 

  • Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples.

  • Compagno LJ V. (1984) Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Vol. 4, Part 2. FAO species catalogue. FAO Fisheries Synopsis, Roma, pp 251–655

  • Corgos A, Rosende-Pereiro A, Lucano C (2016) Assessment of sampling methodology for ecology studies of young of the year scalloped hammerhead (Sphyrna lewini) in coastal areas. Cienc Pesq 24:67–76

    Google Scholar 

  • Cortes E (1999) Standardized diet compositions and trophic levels of sharks. ICES J Mar Sci 56:707–717

    Google Scholar 

  • Cresson P, Ruitton S, Ourgaud M, Harmelin-Vivien M (2014) Contrasting perception of fish trophic level from stomach content and stable isotope analyses: a Mediterranean artificial reef experience. J Exp Mar Bio Ecol 452:54–62. https://doi.org/10.1016/j.jembe.2013.11.014

    Article  Google Scholar 

  • Daly R, Froneman PW, Smale MJ (2013) Comparative feeding ecology of bull sharks (Carcharhinus leucas) in the coastal waters of the southwest Indian Ocean inferred from stable isotope analysis. PLoS One 8:1–11. https://doi.org/10.1371/journal.pone.0078229

    Article  CAS  Google Scholar 

  • Dowd WW, Brill RW, Bushnell PG, Musick JA (2006) Estimating consumption rates of juvenile sandbar sharks (Carcharhinus plumbeus) in Chesapeake Bay, Virginia, using a bioenergetics model. Fish Bull 104:332–342

    Google Scholar 

  • Duncan K, Holland K (2006) Habitat use, growth rates, and dispersal patterns of juvenile scalloped hammerhead sharks Sphyrna lewini in a nursery habitat. Mar Ecol Prog Ser 312:211–221

    Google Scholar 

  • Ebert DA (2002) Ontogenetic changes in the diet of the sevengill shark (Notorynchus cepedianus). Mar Freshw Res 53:517–523. https://doi.org/10.1071/MF01143

    Article  Google Scholar 

  • Ebert DA, Bizzarro JJ (2007) Standardized diet compositions and trophic levels of skates (Chondrichthyes: Rajiformes: Rajoidei). Environ Biol Fishes 80:221–237. https://doi.org/10.1007/s10641-007-9227-4

    Article  Google Scholar 

  • Estrada JA, Rice AN, Lutcavage ME, Skomal GB (2003) Predicting trophic position in sharks of the north-west Atlantic Ocean using stable isotope analysis. J Mar Biol Assoc UK 83:1347–1350

    CAS  Google Scholar 

  • Flores-Martínez IA, Torres-Rojas YE, Galván-Magaña F and Ramos-Miranda J (2016) Diet comparison between silky sharks (Carcharhinus falciformis) and scalloped hammerhead sharks (Sphyrna lewini) off the south-west coast of Mexico. J Mar Biol Assoc United Kingdom 1–9.

  • Funes M, Irigoyen AJ, Trobbiani GA, Galván DE (2018) Stable isotopes reveal different dependencies on benthic and pelagic pathways between Munida gregaria ecotypes. Food Webs 16. https://doi.org/10.1016/j.fooweb.2018.e00101

    Google Scholar 

  • Furlong-Estrada E, Tovar-Ávila J, Pérez-Jiménez JC, Ríos-Jara E (2015) Resilence of Sphyrna lewini, Rhizoprionodon longurio, and Carcharhinus falciformis at the entrance to the Gulf of California after three decades of exploitation. Cienc Mar 41(1):49–63. https://doi.org/10.7773/cm.v41i1.2442

    Article  Google Scholar 

  • Garvey JE, Whiles MR (2017) Trophic ecology. CRC Press, Boca Ratón, Florida

    Google Scholar 

  • Gilmore RG, Dodrill JW, Linley PA (1983) Reproduction and embryonic development of the sand tiger shark Odontaspis taurus (Rafinesque). Fish Bull 81:201–226

    Google Scholar 

  • Grossman GD (1986) Food resource partitioning in a rocky intertidal fish assemblage. J Zool 1:317–355

    Google Scholar 

  • Hammerschlag N, Ovando D, Serafy JE (2010) Seasonal diet and feeding habits of juvenile fishes foraging along a subtropical marine ecotone. Aquat Biol 9:279–290. https://doi.org/10.3354/ab00251

    Article  Google Scholar 

  • Hill JM, McQuaid CD, Kaehler S (2006) Biogeographic and nearshore-offshore trends in isotope ratios of intertidal mussels and their food sources around the coast of southern Africa. Mar Ecol Prog Ser 318:63–73

    CAS  Google Scholar 

  • Hoffmayer ER, Parsons GR (2003) Food habits of three shark species from the Mississippi sound in the northern Gulf of Mexico. Southeast Nat 2(2):271–280

    Google Scholar 

  • Hussey NE, Brush J, McCarthy ID, Fisk AT (2010a) δ15N and δ13C diet-tissue discrimination factors for large sharks under semi-controlled conditions. Comp Biochem Physiol 155:445–453. https://doi.org/10.1016/j.cbpa.2009.09.023

    Article  CAS  Google Scholar 

  • Hussey NE, DiBattista JD, Moore JW, Ward EJ, Fisk AT, Kessel ST, Feldheim KA, Gruber SH, Guttridge TL, Weideli OC et al (2017) Risky business for a juvenile marine predator? Testing the influence of foraging strategies on size and growth rate under natural conditions. Proc Biol Sci. https://doi.org/10.6084/m9.figshare.c.3723955

  • Hussey NE, Dudley SFJ, Mccarthy ID, Cliff G, Fisk AT (2011) Stable isotope profiles of large marine predators: viable indicators of trophic position, diet and movement in sharks? Can J Fish Aquat Sci 68:2029–2045. https://doi.org/10.1139/2011-115

    Article  CAS  Google Scholar 

  • Hussey NE, MacNeil MA, Olin JA, McMeans BC, Kinney MJ, Chapman DD, Fisk AT (2012a) Stable isotopes and elasmobranchs: tissue types, methods, applications, and assumptions. J Fish Biol 80:1449–1484. https://doi.org/10.1111/j.1095-8649.2012.03251.x

    Article  CAS  PubMed  Google Scholar 

  • Hussey NE, Olin JA, Kinney MJ, McMeans BC, Fisk AT (2012b) Lipid extraction effects on stable isotope values (δ13C and δ15N) of elasmobranch muscle tissue. J Exp Mar Bio Ecol 434–435:7–15. https://doi.org/10.1016/j.jembe.2012.07.012

    Article  CAS  Google Scholar 

  • Hussey NE, Wintner SP, Dudley SFJ, Cliff G, Cocks DT, MacNeil MA (2010b) Maternal investment and size-specific reproductive output in carcharhinid sharks. J Anim Ecol 79:184–193. https://doi.org/10.1111/j.1365-2656.2009.01623.x

    Article  PubMed  Google Scholar 

  • Hyslop EJ (1980) Stomach contents analysis - a review of methods and their application. J Fish Biol 17:411–429

    Google Scholar 

  • Iverson SJ, Lang SL, Cooper MH (2001) Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids 36:1283–1287

    CAS  PubMed  Google Scholar 

  • Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x

    Article  PubMed  Google Scholar 

  • Jackson MC, Donohue I, Jackson AL, Britton JR, Harper DM, Grey J (2012) Populations-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS One 7:e31757. https://doi.org/10.1371/journal.pone.0031757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayasinghe C, Gotoh N, Tokairin S, Ehara H, Wada S (2003) Inter species changes of lipid compositions in liver of shallow-water sharks from the Indian Ocean. Fish Sci 69:644–653

    CAS  Google Scholar 

  • Kinney MJ, Hussey NE, Fisk AT, Tobin AJ, Simpfendorfer CA (2011) Communal or competitive? Stable isotope analysis provides evidence of resource partitioning within a communal shark nursery. Mar Ecol Prog Ser 439:263–276

    Google Scholar 

  • Knip DM, Heupel MR, Simpfendorfer CA, Tobin AJ, Moloney J (2011) Ontogenetic shifts in movement and habitat use of juvenile pigeye sharks Carcharhinus amboinensis in a tropical nearshore region. Mar Ecol Prog Ser 425:233–246. https://doi.org/10.3354/meps09006

    Article  Google Scholar 

  • Kolasinski J, Frouin P, Sallon A, Rogers K, Bruggemann HJ, Potier M (2009) Feeding ecology and ontogenetic dietary shift of yellowstripe goatfish Mulloidichthys flavolineatus (Mullidae) at Reunion Island, SW Indian ocean. Mar Ecol Prog Ser 386:181–195. https://doi.org/10.3354/meps08081

    Article  CAS  Google Scholar 

  • Kozak ER, Franco-Gordo C, Godínez-Domínguez E, Suárez-Morales E, Ambriz-Arreola I (n.d.) Stable isotope (δ15N, δ13C) and niche size variability of tropical calanoid copepods and zooplankton fractions in response to seasonal hydrographic processes. Mar Biol

  • Krebs CJ (1999) Ecological Methodology, 2nd edn. Benjamin Cummings, Menlo Park 620 pp

    Google Scholar 

  • Labropoulou M, Machias A, Tsimenides N (1999) Habitat selection and diet of juvenile red porgy, Pagrus pagrus. Fish Bull 97:495–507

    Google Scholar 

  • Layman CA, Arrington DA, Montaña CG, Post DM (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42–48

    PubMed  Google Scholar 

  • Layman CA, Araujo MS, Boucek R, Hammerschlag-Peyer CM, Harrison E, Jud ZR, Matich P, Rosenblatt AE, Vaudo JJ, Yeager LA, Post DM, Bearhop S (2012) Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev 87(3):545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x

    Article  PubMed  Google Scholar 

  • Liu KM, Chen CT (1999) Demographic analysis of the Scalloped Hammerhead, Sphyrna lewini, in the northwestern Pacific. Fish Sci 65:218–223

    CAS  Google Scholar 

  • Logan JM, Jardine TD, Miller TJ, Bunn SE, Cunjak RA, Lutcavage ME (2008) Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol 77:838–846. https://doi.org/10.1111/j.1365-2656.2008.01394.x

    PubMed  Google Scholar 

  • Logan JM, Lutcavage ME (2010) Stable isotope dynamics in elasmobranch fishes. Hydrobiologia 644:231–244. https://doi.org/10.1007/s10750-010-0120-3

    Article  CAS  Google Scholar 

  • Lowe CG (2002) Bioenergetics of free-ranging juvenile scalloped hammerhead sharks (Sphyrna lewini) in Kane’ohe Bay, O’ahu, HI. J Exp Mar Bio Ecol 278:141–156

    Google Scholar 

  • Lowe CG, Wetherbee BM, Crow GL, Tester AL (1996) Ontogenetic dietary shifts and feeding behavior of the tiger shark, Galeocerdo cuvier, in Hawaiian waters. Environ Biol Fishes 47:203–211

    Google Scholar 

  • Lucifora LO, García VB, Menni RC, Escalante AH (2006) Food habits, selectivity, and foraging modes of school shark Galeorhinus galeus. Mar Ecol Prog Ser 315:259–270

    Google Scholar 

  • MacNeil MA, Drouillard KG, Fisk AT (2006) Variable uptake and elimination of stable nitrogen isotopes between tissues in fish. Can J Fish Aquat Sci 63:345–353. https://doi.org/10.1139/F05-219

    Article  CAS  Google Scholar 

  • MacNeil MA, Skomal GB, Fisk AT (2005) Stable isotopes from multiple tissues reveal diet switching in sharks. Mar Ecol Prog Ser 302:199–206

    Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Science Ltd., Oxford, UK

    Google Scholar 

  • Malpica-Cruz L, Herzka SZ, Sosa-Nishizaki O, Escobedo-Olvera MA (2013) Tissue-specific stable isotope ratios of shortfin mako (Isurus oxyrinchus) and white (Carcharodon carcharias) sharks as indicators of size-based differences in foraging habitat and trophic level. Fish Oceanogr 22:429–445. https://doi.org/10.1111/fog.12034

    Article  Google Scholar 

  • Malpica-Cruz L, Herzka SZ, Sosa-Nishizaki O, Lazo P (2012) Tissue-specific isotope trophic discrimination factors and turnover rates in a marine elasmobranch: empirical and modeling results. Can J Fish Aquat Sci 69:551–564. https://doi.org/10.1139/F2011-172

    Article  CAS  Google Scholar 

  • Matich P, Heithaus MR, Layman CA (2010) Size-based variation in intertissue comparisons of stable carbon and nitrogen isotopic signatures of bull sharks (Carcharhinus leucas) and tiger sharks (Galeocerdo cuvier). Can J Fish Aquat Sci 67:877–885. https://doi.org/10.1139/F10-037

    Article  CAS  Google Scholar 

  • Miller TW, Brodeur RD, Rau G, Omori K (2010) Prey dominance shapes trophic structure of the northern California Current pelagic food web: Evidence from stable isotopes and diet analysis. Mar Ecol Prog Ser 420:15–26. https://doi.org/10.3354/meps08876

    Article  Google Scholar 

  • Moser CF, de Avila FR, de Oliveira M, Tozetti AM (2017) Diet composition and trophic niche overlap between two sympatric species of Physalaemus (Anura, Leptodactylidae, Leiuperinae) in a subtemperate forest of southern Brazil. Herpetol Notes 10:9–15

    Google Scholar 

  • Munroe SEM, Heupel MR, Fisk AT, Logan M, Simpfendorfer CA (2015) Regional movement patterns of a small-bodied shark revealed by stable-isotope analysis. J Fish Biol 86:1567–1586. https://doi.org/10.1111/jfb.12660

    Article  CAS  PubMed  Google Scholar 

  • Newman SP, Handy RD, Gruber SH (2009) Diet and prey preference of juvenile lemon sharks Negaprion brevirostris. Mar Ecol Prog Ser 398:221–234. https://doi.org/10.3354/meps08334

    Article  Google Scholar 

  • Newman SP, Handy RD, Gruber SH (2012) Ontogenetic diet shifts and prey selection in nursery bound lemon sharks, Negaprion brevirostris, indicate a flexible foraging tactic. Environ Biol Fishes 95:115–126

    Google Scholar 

  • Olin JA, Hussey NE, Fritts M, Heupel MR, Simpfendorfer CA, Poulakis GR, Fisk AT (2011) Maternal meddling in neonatal sharks: implications for interpreting stable isotopes in young animals. Rapid Commun Mass Spectrom 25:1008–1016. https://doi.org/10.1002/rcm.4946

    Article  CAS  PubMed  Google Scholar 

  • Olin JA, Hussey NE, Grgicak-Mannion A, Fritts MW, Wintner SP, Fisk AT (2013) Variable δ15N diet-tissue discrimination factors among sharks: implications for trophic position, diet and food web models. PLoS One 8:1–11. https://doi.org/10.1371/journal.pone.0077567

    Article  CAS  Google Scholar 

  • Parnell AC, Jackson AL (2013) SIAR: stable isotope analysis in R. R package version 4:2

    Google Scholar 

  • Pérez-Jiménez JC, Sosa-Nishizaki O, Furlong-Estrada E, Corro-Espinosa D, Venegas-Herrera A, Barragán-Cuencas OV (2005) Artisanal shark fishery at «Tres Marias» Islands and Isabel Island in the Central Mexican Pacific. J Northwest Atl Fish Sci 35:333–343

    Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320

    Google Scholar 

  • Pettitt-Wade H, Newman SP, Parsons KT, Gruber SH, Handy RD (2011) Dietary metal and macro-nurtient intakes of juvenile lemon sharks determined from the nutritional composition of prey items. Mar Ecol Prog Ser 433:245–260. https://doi.org/10.3354/meps09114

    Article  CAS  Google Scholar 

  • Pianka ER (1973) The structure of lizard communities. Annu Rev Ecol Evol Syst 4:53–74

    Google Scholar 

  • Pianka ER, Pianka HD (1976) Comparative ecology of twelve species of nocturnal lizards (Gekkonidae) in the Western Australian Desert. Copeia 1976:125–142

    Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Google Scholar 

  • Quesada O, González-Freire C, Ferrer MC, Colón-Sáez JO, Fernández-García E, Mercado J, Dávila A, Morales R, Lasalde-Dominicci JA (2016) Uncovering the lipidic basis for the preparation of functional nicotinic acetylcholine receptor detergent complexes for structural studies. Sci Rep 6:1–12. https://doi.org/10.1038/srep32766

    Article  CAS  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing.

  • Reis A, Rudnitskaya A, Blackburn GJ, Fauzi NM, Pitt AR, Spickett CM (2013) A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J Lipid Res 54:1812–1824. https://doi.org/10.1194/jlr.M034330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosende-Pereiro A, Corgos A (2018) Pilot acoustic tracking study on young of the year scalloped hammerhead sharks, Sphyrna lewini, within a coastal nursery area in Jalisco, Mexico. Lat Am J Aquat Res 46(4):645–659. https://doi.org/10.3856/vol46-issue4-fulltext-2

    Article  Google Scholar 

  • Rosende-Pereiro A (2019) Habitat use and ecology of young-of-the-year hamerhead shark, Sphyrna lewini, on the coast of Jalisco and Colima. Dissertation, Universidad de Guadalajara.

  • Simpfendorfer CA, Heupel MR, White WT, Dulvy NK (2011) The importance of research and public opinion to conservation management of sharks and rays: a synthesis. Mar Freshw Res 62:518. https://doi.org/10.1071/MF11086

    Article  CAS  Google Scholar 

  • Speed CW, Meekan MG, Field IC, McMahon CR, Abrantes K, Bradshaw CJA (2012) Trophic ecology of reef sharks determined using stable isotopes and telemetry. Coral Reefs 31:357–367. https://doi.org/10.1007/s00338-011-0850-3

    Article  Google Scholar 

  • Stillwell CE, Kohler NE (1982) Food, feeding habits, and estimates of daily ration of the shortfin mako (Isurus oxyrinchus) in the northeast Atlantic. Can J Fish Aquat Sci 39:407–414

    Google Scholar 

  • Tamburin E, Kim SL, Elorriaga-Verplancken FR, Madigan DJ, Hoyos-Padilla M, Sánchez-González A, Hernández-Herrera A, Castillo-Geniz JL, Godinez-Padilla CJ, Galván-Magaña F (2019) Isotopic niche and resource sharing among young sharks (Carcharodon carcharias and Isurus oxyrinchus) in Baja California, Mexico. Mar Ecol Prog Ser 613:107–124. https://doi.org/10.3354/meps12884

    Article  CAS  Google Scholar 

  • Torres-Huerta AM, Villavicencio-Garayzar C, Corro-Espinosa D (2008) Biología reproductiva de la cornuda común Sphyrna lewini Griffith & Smith (Sphyrnidae) en el Golfo de California. Hidrobiológica 18:227–238

    Google Scholar 

  • Torres-Rojas YE, Hernández-Herrera A, Galván-Magaña F, Alatorre-Ramírez VG (2010) Stomach content analysis of juvenile, scalloped hammerhead shark Sphyrna lewini captured off the coast of Mazatlán, Mexico. Aquat Ecol 44:301–308. https://doi.org/10.1007/s10452-009-9245-8

    Article  CAS  Google Scholar 

  • Torres-Rojas YE, Páez Osuna F, Camalich J, Galván Magaña F (2015) Diet and trophic level of scalloped hammerhead shark (Sphyrna lewini) from the Gulf of California and Gulf of Tehuantepec, Mexico. Iran J Fish Sci 14:767–785

    Google Scholar 

  • Torres-Rojas YE, Páez Osuna F, Hernández Herrera A, Galván Magaña F, Aguiñiga García S, Villalobos Ortíz H, Sampson L (2014) Feeding grounds of juvenile scalloped hammerhead sharks (Sphyrna lewini) in the south-eastern Gulf of California. Hydrobiologia 726:81–94. https://doi.org/10.1007/s10750-013-1753-9

    Google Scholar 

  • Underwood AJ (2009) Experiments in ecology. Their logical design and interpretation using analysis of variance, 11th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Vaudo JJ, Matich P, Heithaus MR (2010) Mother-offspring isotope fractionation in two species of placentatrophic sharks. J Fish Biol 77:1724–1727. https://doi.org/10.1111/j.1095-8649.2010.02813.x

    Article  CAS  PubMed  Google Scholar 

  • Zar JH (2010) Biostatistical analysis, 5th edn. Pearson Prentice Hall, New Jersey

    Google Scholar 

  • Zanella I, López-Garro A, Cure K (2019) Golfo Dulce: critical habitat and nursery area for juvenile scalloped hammerhead sharks, Sphyrna lewini, in the Eastern Tropical Pacific Seascape. Environ Biol Fish. 102:1291–1300. https://doi.org/10.1007/s10641-019-00907-1

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the fishermen of the cooperatives of the south coast of Jalisco, especially those in San Patricio-Melaque and Barra de Navidad, for their collaboration to obtain the specimens for this study. To Valeria Molina and all the students and volunteers that helped with the field and lab work.

Funding

Funds for this project were provided by the Universidad de Guadalajara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Corgos.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosende-Pereiro, A., Flores-Ortega, J.R., González-Sansón, G. et al. Stomach content and stable isotopes reveal an ontogenetic dietary shift of young-of-the-year scalloped hammerhead sharks (Sphyrna lewini) inhabiting coastal nursery areas. Environ Biol Fish 103, 49–65 (2020). https://doi.org/10.1007/s10641-019-00932-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-019-00932-0

Keywords

Navigation