Skip to main content
Log in

Windfall Profits Under Pollution Permits and Output-Based Allocation

  • Published:
Environmental and Resource Economics Aims and scope Submit manuscript

Abstract

This paper analyzes the implementation of pollution permits. It focuses on the distributional impacts linked with the stringency of output-based allocation when two sectors are covered by the market for permits and the total cap is held constant. A new type of profit increase in sectors that are not exposed to international competition, when energy-intensive trade-exposed (EITE) sectors are granted output-based allocations, is demonstrated theoretically. The paper also illustrates a profit increase in the electricity sector in a possible fourth phase of the European Union Emission Trading Scheme, in which output-based allocation will be granted to EITE sectors, compared with the case in which all permits are auctioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Full auctioning does not apply to electricity firms in the “new” EU countries.

  2. In July 2015, the European Commission presented a legislative proposal to revise the EU emissions trading system for the fourth phase (2021–2030). It seeks “to revise the system of free allocation to focus on sectors at highest risk of relocating their production outside the EU” and to establish “more flexible rules to better align the amount of free allowances with production figures”

  3. Requate (2006) surveys the different implications of environmental regulation in the presence of imperfect competition in the market for products.

  4. This phenomenon cannot be observed with linear demand.

  5. Fabra and Reguant (2014) explicitly focus on a linear demand curve.

  6. As Requate (2005) notes, two types of abatement technologies are usually considered: end-of-pipe abatement and process-integrated technology. However, the cleaner technology is a special case of process-integrated technology.

  7. For sector B, we calculate \(n^{BH}={[(p^{B}(1-\beta ^{B})+\beta ^{B}(c^{BF})]}/{\beta ^{B}(p-c^{BH})}\) when \(n^{BF}=1\).

  8. By Meunier and Ponssard (2012): \(\mu _{0}^{e}(\sigma =0)=0.37\), \(\mu _{i}^{e}(\sigma =30)=0.34\), \(\mu _{0}^{s}(\sigma =0)=1.3\), \(\mu _{i}^{s}(\sigma =30)=1\), \(\mu _{0}^{c}(\sigma =0)=0.7\) and \(\mu _{i}^{c}(\sigma =30)=0.6\).

  9. When a sector is exposed to international competition, the mark-up of domestic firms increases by less than the marginal costs. We calculate the mark-up of domestic firms in the exposed sector, and we obtain the following:

    $$\begin{aligned} P^B-(c^{BH}+(\mu _i^{BH}-\omega \mu _0^{BH})\sigma )=\frac{(1-n^{BH}\beta ^B)(c^{BH}+(\mu _i^{BH}-\omega \mu _0^{BH})\sigma )}{(n^{BF}+n^{BH})\beta ^B-1} + \frac{n^{BF}(c^{BF}+\tau )}{(n^{BF}+n^{BH})\beta ^B-1} \end{aligned}$$

    As is evident, the mark-up of domestic firms increases by less than the marginal costs. This low mark-up stems from the exposure to international competition.

References

  • Böhringer C, Lange A (2005) Economics implication of alternative allocation schemes for emission allowances. Scand J Econ 107(3):563–581

    Article  Google Scholar 

  • Borkent B, Gilbert A, Klaassen E, Neelis M, Blok K (2014) Dynamic allocation for the EU emissions trading system. Enabling sustainable growth. Ecofys

  • Boston Consulting Group (2012) Key arguments justifying the European cement industry’s application for state aid to balance the offshoring risk caused by the increased of electricity prices due to EU-ETS, report, January 2012

  • Christin C, Nicolaï J.-Ph, Pouyet J (2013) Pollution permits, abatement technologies and imperfect competition. Economics working paper series of CER-ETH—Center of Economic Research at ETH Zurich, Working paper 13/186, November 2013

  • Demailly D, Quirion P (2006) CO2 abatement, competitiveness and leakage in the European Cement Industry under the EU ETS: grandfathering versus output-based allocation. Clim Policy 6:93–113

    Article  Google Scholar 

  • Demailly D, Quirion P (2008) Changing the allocation rules in the EU ETS: impact on competitiveness and economic efficiency, FEEM working paper no. 89.2008

  • Demailly D, Quirion P (2008) Concilier compétitivité industrielle et politique climatique : faut-il distribuer les quotas de CO2 en fonction de la production ou bien les ajuster aux frontières? La revue èconomique 59(3):497–504

    Article  Google Scholar 

  • Fabra N, Reguant M (2014) Pass-Through of Emissions Costs in Electricity Markets. American Economic Review 104(9):2872–99

    Article  Google Scholar 

  • Fell H, Hintermann B, Vollebergh H (2015) Carbon content of electricity futures in Phase II of the EU ETS. Energy J 36(4):61–83

    Article  Google Scholar 

  • Fischer C (2011) Market power and output-based refunding of environmental policy revenues. Resour Energy Econ 33(1):212–230

    Article  Google Scholar 

  • Fowlie M, Reguant M, Ryan SP (2016) Market-based emissions regulation and industry dynamics. J Political Econ 124(1):249–302

    Article  Google Scholar 

  • Gersbach H, Requate T (2004) Emission Taxes and the Design of Refunding Schemes. Journal of Public Economics 88(3–4):713–25

    Article  Google Scholar 

  • Grubb M, Neuhoff K (2006) Allocation and competitiveness in the EU emissions trading scheme: policy overview. Clim Policy 6:7–30

    Article  Google Scholar 

  • Hepburn C, Quah J, Ritz R (2013) Emissions trading with profit-neutral permit allocations. J Pub Econ 98:85–99

    Article  Google Scholar 

  • Hintermann B (2011) Market power, permit allocation and efficiency in emission permit markets. Environ Resour Econ 49(3):327–349

    Article  Google Scholar 

  • Hintermann B (2015) Market power in emission permit markets: theory and evidence from the EU ETS. Environ Resour Econ 1–24. doi:10.1007/s10640-015-9939-4

  • Hintermann B (2016) Pass-through of CO2 emission costs to hourly electricity prices in Germany. J Assoc Environ Resour Econ 3(4):857–891

    Google Scholar 

  • Hirth L, Ueckerdt F (2013) Redistribution effects of energy and climate policy: The electricity market. Energy Policy 62:934–947

    Article  Google Scholar 

  • Kimmel S (1992) Effects of cost changes on oligopolists’ profits. J Ind Econ 40(4):441–449

    Article  Google Scholar 

  • Kettner C, Köppl A, Schleicher S, Thenius G (2007) Stringency and distribution in the EU emissions trading scheme—The 2005 evidence. WIFO, Vienna

  • Meunier G, Ponssard JP (2012) A sectoral approach balancing efficiency and equity. Environ Resour Econ 53:533–552

    Article  Google Scholar 

  • Ministere d’Economie, des Finances et de l’Industrie (2003) Coûts de référence de la production électrique, DGEMP-DIDEME

  • Monjon S, Quirion P (2011) Addressing leakage in the EU ETS: border adjustment or output-based allocation? Ecol Econ 70:1957–1971

    Article  Google Scholar 

  • Neuhoff K, Keats M, Sato M (2006) Allocation, incentives and distortions: the impact of EU ETS emissions allowance allocations to the electricity sector. Clim Policy 6(1):73–91

    Article  Google Scholar 

  • Quirion P (2010) Competitiveness and leakage. In: Climate change policies—global challenges and future prospects. University of Vigo, Spain: Emilio Cerdá, pp 77–94

  • Reinaud J (2004) Industrial competitiveness under the European Union emissions trading scheme. International Energy Agency information paper

  • Requate T (2005) Dynamic incentives by environmental policy instruments: a survey. Ecol Econ 54:175–195

    Article  Google Scholar 

  • Requate T (2006) Environmental policy under imperfect competition. In: Folmer H, Tietenberg, T (eds) The international yearbook of environmental and resource economics 2006/2007, Edward Elgar, pp 120–208

  • Seade J (1985) Profitable cost increases and the shifting of taxation. Unpublished University of Warwick economic research paper

  • Sijm J, Neuhoff K, Chen Y (2006) CO2 cost pass-through and windfall profits in the power sector. Clim Policy 6(1):49–72

    Article  Google Scholar 

  • Smale R, Hartley M, Hepburn C, Ward J, Grubb M (2006) The impact of CO2 emissions trading on firm profits and market prices. Clim Policy 6(1):29–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Nicolaï.

Appendices

Appendix 1: Table of Quantities, Emissions and Prices in Each Sector

In Tables 8 and 9, we present the individual and total quantities, the emissions rates and the market prices for each sector. Sector A is a non-exposed sector, and calculations in this sector are used in the illustration to reflect the electricity sector. Sector B is an exposed sector, and calculations in this sector are used in the illustration to reflect the steel and cement sectors.

Table 9 Quantities, emissions rate and prices in sector B

Appendix 2: Condition to Ensure the Existence of Bilateral Trade

Now, we present the condition that ensures the existence of bilateral trade in sector B. We need to ensure that \(q_i^{BF}(\sigma =0)>0\). Moreover, from Eq. (11), we know the following:

$$\begin{aligned} q_i^{BF}(\sigma =0)=\alpha ^B\Big (\frac{1}{\beta ^B}\Big )^{\beta ^B}\frac{((n^{BF}+n^{BH})\beta ^B-1)^{\beta ^B} \left( \beta ^B n^{BH} c^{BH}+(1-n^{BH} \beta ^B)(c^{BF}+\tau )\right) }{(n^{BH} c^{BH}+n^{BF} (c^{BF}+\tau ))^{(\beta ^B+1)}}. \end{aligned}$$
(31)

Thus, the condition that ensures the existence of bilateral trade in sector B is given as follows:

$$\begin{aligned} \alpha ^B\Big (\frac{1}{\beta ^B}\Big )^{\beta ^B}\frac{((n^{BF}+n^{BH})\beta ^B-1)^{\beta ^B} \left( \beta ^B n^{BH} c^{BH}+(1-n^{BH} \beta ^B)(c^{BF}+\tau )\right) }{(n^{BH} c^{BH}+n^{BF} (c^{BF}+\tau ))^{(\beta ^B+1)}}>0, \end{aligned}$$
(32)

From Assumption 1, \((n^{BF}+n^{BH})\beta ^B-1>0\). We thus deduce that the condition is equivalent to

$$\begin{aligned} \beta ^B n^{BH} c^{BH}+(1-n^{BH} \beta ^B)(c^{BF}+\tau )>0, \end{aligned}$$
(33)

The condition may be rewritten as follows:

$$\begin{aligned} \tau <\left( \frac{\beta ^Bn^{BH}c^{BH}}{n^{BH}\beta ^B-1} -c^{BF}\right) . \end{aligned}$$
(34)

Appendix 3: Condition to Ensure that the Optimum is a Maximum

To ensure profit maximization in sector j, we analyze the conditions in which the Hessian matrix of the maximization problem is negative.

Let us define the Hessian as follows:

$$\begin{aligned} \frac{\partial ^2 \pi ^j}{\partial q_i^{j2} } \frac{\partial ^2 \pi ^j}{\partial \mu _i^{j2}} - \left( \frac{\partial ^2 \pi ^j}{\partial q_i^j \partial \mu _i^j} \right) ^2 <0, \end{aligned}$$
(35)

Therefore, the requirement on the cost function to satisfy the second-order conditions is as follows:

$$\begin{aligned} (P''^j q_i^j+2P'^j)\gamma q_i^j +(-\sigma +\gamma ^j(\mu _0^j-\mu _i^j))^2>0. \end{aligned}$$
(36)

Appendix 4: Impact of Output-Based Allocation on Profits in the Non-exposed Sector

The profit of firm i in sector A is given as follows:

$$\begin{aligned} \pi _i^A(q_i^A,\mu _i^A)&= P^A(Q^A)q_i^A - (c_i^A + \mu _i^A\sigma )q_i^A - \gamma ^A(\mu _0^A-\mu _i^A)^2 \frac{q_i^A}{2}. \end{aligned}$$
(37)

The first-order conditions satisfy the following:

$$\begin{aligned}&\frac{\partial \pi _i^A}{\partial q_i^A}= \frac{\partial P^A}{\partial Q^A}q_i^A + P^A(Q^A) - c_i^A-\mu _i^A\sigma - \frac{\gamma ^A}{2}(\mu _0^A-\mu _i^A)^2=0. \end{aligned}$$
(38)
$$\begin{aligned}&\frac{\partial \pi _i^{A}}{\partial \mu _i^{A}} = -\sigma q_i^{A} + \gamma ^A q_i^{A} (\mu _0 ^{A} -\mu _i^{A})= 0. \end{aligned}$$
(39)

From Eq. (39), we obtain

$$\begin{aligned} \mu _i^A = \mu _0^A - \frac{\sigma }{\gamma ^A}. \end{aligned}$$
(40)

Taking the derivative of Eq. (38) with respect to \(\sigma \), we obtain

$$\begin{aligned} \frac{\partial ^2 P^A}{\partial {Q^A}^2}\frac{\partial Q^A}{\partial \sigma }q_i^A+\frac{\partial P^A}{\partial q_i^A}\frac{\partial q_i^A}{\partial \sigma }+\frac{\partial P^A}{\partial Q^A} \frac{\partial Q^A}{\partial \sigma }-\mu _i^A=&0, \end{aligned}$$
(41)
$$\begin{aligned} \frac{\partial P^A}{\partial Q^A} \frac{\partial Q^A}{\partial \sigma }\left( 1+\frac{{\partial ^2 P^A}/{\partial {Q^A}^2}q_i^A}{{\partial P^A}/{\partial Q^A}}\right) +\frac{\partial P^A}{\partial q_i^A}\frac{\partial q_i^A}{\partial \sigma }-\mu _i^A=&0. \end{aligned}$$
(42)

We focus on the term \(\left( 1+\frac{({\partial ^2 P^A}/{\partial {Q^A}^2})q_i^A}{{\partial P^A}/{\partial Q^A}}\right) \).

Because \(P^A(Q^A)={\alpha ^A}^{\frac{1}{\beta ^A}}{Q^A}^{-\frac{1}{\beta ^A}}\), we calculate the following expression:

$$\begin{aligned}&1+\frac{({\partial ^2 P^A}/{\partial {Q^A}^2})q_i^A}{{\partial P^A}/{\partial Q^A}}=1+\frac{{\alpha ^A}^{\frac{1}{\beta ^A}} (-\frac{1}{\beta ^A})(\frac{-\beta ^A-1}{\beta ^A}) {Q^A}^{-\frac{1}{\beta ^A}-2}q_i^A}{{\alpha ^A}^{\frac{1}{\beta ^A}} (-\frac{1}{\beta ^A}) {Q^A}^{-\frac{1}{\beta ^A}-1}}, \end{aligned}$$
(43)
$$\begin{aligned}&1+\frac{({\partial ^2 P^A}/{\partial {Q^A}^2})q_i^A}{{\partial P^A}/{\partial Q^A}}=\frac{n^A\beta ^A+\beta ^A+1}{n^A\beta ^A}. \end{aligned}$$
(44)

From Eq. (42), we obtain

$$\begin{aligned} \frac{\partial P^A}{\partial q_i^A}\frac{\partial q_i^A}{\partial \sigma }=&\mu _i^A-\left( \frac{n^A\beta ^A-\beta ^A-1}{n^A\beta ^A}\right) \frac{\partial P^A}{\partial Q^A} \frac{\partial Q^A}{\partial \sigma }. \end{aligned}$$
(45)

Now, we sum the \(n^A\) first-order conditions in sector A and obtain the following:

$$\begin{aligned} n^AP^A +\frac{\partial P^A}{\partial Q^A}Q^A-n^A\left( c_i^A+\mu _i^A\sigma + \frac{\gamma ^A}{2}(\mu _0^A-\mu _i^A)^2\right) =&0, \end{aligned}$$
(46)

Taking the derivative of Eq. (46) with respect to \(\sigma \), we obtain the following:

$$\begin{aligned} n^A\frac{\partial P^A}{\partial Q^A}\frac{\partial Q^A}{\partial \sigma }+ \frac{\partial ^2 P^A}{\partial {Q^A}^2} \frac{\partial Q^A}{\partial \sigma }Q^A+\frac{\partial P^A}{\partial Q^A} \frac{\partial Q^A}{\partial \sigma }-n^A\mu _i^A=&0, \end{aligned}$$
(47)
$$\begin{aligned} \left( n^A+1+\frac{({\partial ^2 P^A}/{\partial {Q^A}^2}) Q^A}{{\partial P^A}/{\partial Q^A}}\right) \frac{\partial P^A}{\partial Q^A}\frac{\partial Q^A}{\partial \sigma }-n^A\mu _i^A=&0. \end{aligned}$$
(48)

Because \(P^A(Q^A)={\alpha ^A}^{\frac{1}{\beta ^A}} {Q^A}^{-\frac{1}{\beta ^A}}\), we calculate the following expression:

$$\begin{aligned}&n^A+1+\frac{({\partial ^2 P^A}/{\partial {Q^A}^2}) Q^A}{{\partial P^A}/{\partial Q^A}}=n^A+1+\frac{{\alpha ^A}^{\frac{1}{\beta ^A}} (-\frac{1}{\beta ^A})(\frac{-\beta ^A-1}{\beta ^A}) {Q^A}^{-\frac{1}{\beta ^A}-2}Q^A}{{\alpha ^A}^{\frac{1}{\beta ^A}} (-\frac{1}{\beta ^A}) {Q^A}^{-\frac{1}{\beta ^A}-1}}, \end{aligned}$$
(49)
$$\begin{aligned}&n^A+1+\frac{({\partial ^2 P^A}/{\partial {Q^A}^2}) Q^A}{{\partial P^A}/{\partial Q^A}}=n^A-\frac{1}{\beta ^A}. \end{aligned}$$
(50)

The Eq. (48) may then be rewritten as follows:

$$\begin{aligned} \frac{\partial P^A}{\partial Q^A} \frac{\partial Q^A}{\partial \sigma } =\frac{n^A\mu _i^A}{(n^A-\frac{1}{\beta ^A})}. \end{aligned}$$
(51)

Because we analyze the effect of the permit price on firm profits, we study the derivative of the function \(\pi _{i}^{A}\) with respect to \(\sigma \). From Eq. (37), we obtain

$$\begin{aligned} \frac{\partial \pi _{i}^A}{\partial \sigma } ={q_i}^A\left( \frac{\partial P^A}{\partial Q^A} \frac{\partial Q^A}{\partial \sigma }- \frac{\partial P^A}{\partial q_i^A}\frac{\partial q_i^A}{\partial \sigma }\right) - \mu _i^A q_i^A. \end{aligned}$$
(52)

By replacing (45) and (51) in (52), we obtain

$$\begin{aligned} \frac{\partial \pi _{i}^A}{\partial \sigma } =q_i^A \mu _i^A\left( \frac{1-\beta ^A}{n^A\beta ^A-1} \right) . \end{aligned}$$
(53)

Appendix 5: Proof of Lemma 3

Let \(CS^A\) be the consumer surplus in sector A:

$$\begin{aligned} CS^A&=\int _0^{Q^A}{P(y)dy}-P^A Q^A,\end{aligned}$$
(54)
$$\begin{aligned}&=\int _0^{Q^A}{{\alpha ^A}^{\frac{1}{\beta ^A}} y^{-\frac{1}{\beta ^A}} dy}-P^A Q^A,\end{aligned}$$
(55)
$$\begin{aligned}&=\left[ \left( \frac{{\alpha ^A}^{\frac{1}{\beta ^A}} \beta ^A}{\beta ^A-1}\right) {y}^{\frac{\beta ^A-1}{\beta ^A}}\right] _0^{Q^A}- {\alpha ^A}^{\frac{1}{\beta ^A}} {Q^A}^\frac{\beta ^A-1}{\beta ^A}. \end{aligned}$$
(56)

When \(\beta ^A>1\), the consumer surplus is given as follows:

$$\begin{aligned} CS^A = \left( \frac{{\alpha ^A}^{\frac{1}{\beta ^A}}}{\beta ^A-1}\right) {Q^A}^{\frac{\beta ^A-1}{\beta ^A}}. \end{aligned}$$
(57)

However, when \(\beta ^A<1\), the consumer surplus is given as follows:

$$\begin{aligned} CS^A =\left( \frac{{\alpha ^A}^{\frac{1}{\beta ^A}} \beta ^A}{\beta ^A-1}\right) \lim _{Q^A \rightarrow 0}\frac{1}{{Q^A}^\frac{1-\beta ^A}{\beta ^A}}+ \left( \frac{{\alpha ^A}^{\frac{1}{\beta ^A}}}{\beta ^A-1}\right) {Q^A}^{\frac{\beta ^A-1}{\beta ^A}}. \end{aligned}$$
(58)

Recall that \(Q^A\) do not depend on \(\omega \). In the two cases, we obtain the following:

$$\begin{aligned} \frac{\partial CS^A}{\partial \omega }&=\underbrace{\left( \frac{{\alpha ^A}^{\frac{1}{\beta ^A}}}{\beta ^A}\right) {Q^A}^{-\frac{1}{\beta ^A}}}_{(+)}\underbrace{\left[ \frac{\partial Q^A}{\partial \sigma }\frac{\partial \sigma }{\partial \omega }\right] }_{(?)}. \end{aligned}$$
(59)

We know from Lemma 2 that \(\frac{\partial \sigma }{\partial \omega }>0\). Thus, the sign of \(\left[ \frac{\partial Q^A}{\partial \sigma }\frac{\partial \sigma }{\partial \omega }\right] \) is given by the sign of \(\frac{\partial Q^A}{\partial \sigma }\). We now calculate \(\frac{\partial Q^A}{\partial \sigma }\) and obtain the following:

$$\begin{aligned} \frac{\partial Q^A}{\partial \sigma }&=-\beta ^A\left[ \frac{[{\alpha ^A}^{\frac{1}{\beta ^A}}(1-\frac{1}{n^A\beta ^A})]^{\beta ^A}}{[c_i^A+\mu _0^A\sigma -\frac{\sigma ^2}{2\gamma ^A}]^{(\beta ^A+1)}}\right] (\mu _0^A -\frac{\sigma }{\gamma ^A}). \end{aligned}$$
(60)

Knowing that \(Q^A(\sigma )>0\) we can deduce that

$$\begin{aligned} \left[ \frac{[{\alpha ^A}^{\frac{1}{\beta ^A}}(1-\frac{1}{n^A\beta ^A})]^{\beta ^A}}{[c_i^A+\mu _0^A\sigma -\frac{\sigma ^2}{2\gamma ^A}]^{(\beta ^A+1)}}\right] >0. \end{aligned}$$
(61)

Moreover, we know that \(\mu _i^A>0\). From Eq. (14), we obtain

$$\begin{aligned} \mu _0^A-\frac{\sigma }{\gamma ^A}>0. \end{aligned}$$
(62)

From Eqs. (60), (61) and (62), we can easily ascertain that \(\frac{\partial Q^A}{\partial \sigma }<0\); finally, from Eq. (59), we find that \(\frac{\partial CS^A}{\partial \omega }<0\).

Appendix 6: Proof of Lemma 4

We define the consumer surplus in sector B as follows:

$$\begin{aligned} CS^B&=\int _0^{Q^B}{P(y)dy}-P^B Q^B, \end{aligned}$$
(63)
$$\begin{aligned}&=\int _0^{Q^B}{{\alpha ^B}^{\frac{1}{\beta ^B}} y^{-\frac{1}{\beta ^B}} dy}-P^B Q^B, \end{aligned}$$
(64)
$$\begin{aligned}&=\left[ \left( \frac{{\alpha ^B}^{\frac{1}{\beta ^B}} \beta ^B}{\beta ^B-1}\right) y^{\frac{\beta ^B-1}{\beta ^B}}\right] ^{Q^B}_0-{\alpha ^B}^{\frac{1}{\beta ^B}}{Q^B}^\frac{\beta -1}{\beta }. \end{aligned}$$
(65)

When \(\beta ^B>1\),

$$\begin{aligned} CS^B =\left( \frac{{\alpha ^B}^{\frac{1}{\beta ^B}}}{\beta ^B-1}\right) {Q^B}^{\frac{\beta ^B-1}{\beta ^B}}. \end{aligned}$$
(66)

However, when \(\beta ^B<1\),

$$\begin{aligned} CS^B =\left( \frac{{\alpha ^B}^{\frac{1}{\beta ^B}} \beta ^B}{\beta ^B-1}\right) \lim _{Q^B \rightarrow 0}\frac{1}{{Q^B}^\frac{1-\beta ^B}{\beta ^B}}+\left( \frac{{\alpha ^B}^{\frac{1}{\beta ^B}}}{\beta ^B-1}\right) {Q^B}^{\frac{\beta ^B-1}{\beta ^B}}. \end{aligned}$$
(67)

In the two cases, we obtain

$$\begin{aligned} \frac{\partial CS^B}{\partial \omega }=\underbrace{\left( \frac{{\alpha ^B}^{\frac{1}{\beta ^B}}}{\beta ^B}\right) {Q^B}^{\frac{-1}{\beta ^B}}}_{(+)}\underbrace{\left[ \frac{\partial Q^B}{\partial \omega }\right] }_{(?)}. \end{aligned}$$
(68)

Now, we focus on and calculate the term \(\frac{\partial Q^B}{\partial \omega }\).

$$\begin{aligned} \frac{\partial Q^B}{\partial \omega }= & {} -\beta ^B\frac{\left( \frac{{\alpha ^B}^{\frac{1}{\beta ^B}}}{\beta ^B}\right) ^{\beta ^B}[(n^{BF}+n^{BH})\beta ^B-1]^{\beta ^B}}{[n^{BH}(c^{BH}+(\mu _i^{BH}-\omega \mu _0^{BH})\sigma )+n^{BF}(c^{BF}+\tau )]^{\beta ^B+1}}\nonumber \\&\times \left[ \frac{\partial [(\mu _i^{BH}-\omega \mu _0^{BH})\sigma ]}{\partial \omega }\right] . \end{aligned}$$
(69)

Knowing that \(Q^B(\sigma )>0\), we can deduce the following:

$$\begin{aligned} \left( \frac{\left( \frac{{\alpha ^B}^{\frac{1}{\beta ^B}}}{\beta ^B}\right) ^{\beta ^B}[(n^{BF}+n^{BH})\beta ^B-1]^{\beta ^B}}{[n^{BH}(c^{BH}+(\mu _i^{BH}-\omega \mu _0^{BH})\sigma )+n^{BF}(c^{BF}+\tau )]^{\beta ^B+1}}\right) >0. \end{aligned}$$
(70)

Now, we focus on and calculate the term \(\frac{\partial [(\mu _i^{BH}-\omega \mu _0^{BH})\sigma ]}{\partial \omega }\).

$$\begin{aligned} \frac{\partial [(\mu _i^{BH}-\omega \mu _0^{BH})\sigma ]}{\partial \omega }=-\mu _0^{BH}\sigma +(1-\omega )\mu _0^{BH}\frac{\partial \sigma }{\partial \omega } -\frac{2\sigma }{\gamma ^B} \frac{\partial \sigma }{\partial \omega }. \end{aligned}$$
(71)

Assuming \(\sigma >\frac{\partial \sigma }{\partial \omega }\), we obtain \(\mu _0^{BH}\sigma >\mu _0^{BH}\frac{\partial \sigma }{\partial \omega }\), which implies \(\mu _0^{BH}\sigma >(1-\omega )\mu _0^{BH}\frac{\partial \sigma }{\partial \omega }\). Moreover, we know that \(\frac{\partial \sigma }{\partial \omega }>0\). We deduce the following:

$$\begin{aligned} \frac{\partial [(\mu _i^{BH}-\omega \mu _0^{BH})\sigma ]}{\partial \omega }&=-\mu _0^{BH}\sigma +(1-\omega )\mu _0^{BH}\frac{\partial \sigma }{\partial \omega } -\frac{2\sigma }{\gamma ^B} \frac{\partial \sigma }{\partial \omega }<0. \end{aligned}$$
(72)

From Eqs. (69), (70) and (72), we can easily ascertain that \(\frac{\partial Q^B}{\partial \omega }>0\); finally, from Eq. (68), we find that \(\frac{\partial CS^B }{\partial \omega }>0\).

Appendix 7: Proof of Lemma 5

We show that

$$\begin{aligned} \frac{\partial \pi _i^{BH}}{\partial \omega }>0. \end{aligned}$$
(73)

The profit for a domestic firm i in sector B is given as follows:

$$\begin{aligned} \pi _i^{BH}=\left[ P^B-c_i^{BH}-(\mu _i^{BH}-\omega _0\mu ^{BH})\sigma -\frac{\gamma ^B}{2}(\mu _0^{BH}-\mu _i^{BH})^2\right] q^{BH}_i. \end{aligned}$$
(74)

Taking the derivative with respect to \(\omega \),

$$\begin{aligned} \frac{\partial \pi _i^{BH}}{\partial \omega }= & {} \left[ \frac{\partial P^B}{\partial \omega }-\frac{\partial ((\mu _i^{BH}-\omega _0\mu ^{BH})\sigma )}{\partial \omega }-\frac{\sigma }{\gamma ^B}\right] q_i^{BH} \nonumber \\&+\left[ P^B-c_i^{BH}-(\mu _i^{BH}-\omega _0\mu ^{BH})\sigma -\frac{\gamma ^B}{2}(\mu _0^{BH}-\mu _i^{BH})^2\right] \frac{\partial q_i^{BH} }{\partial \omega }. \end{aligned}$$
(75)

The mark-up is positive, and we can deduce that

$$\begin{aligned} \left[ P^B-c_i^{BH}-(\mu _i^{BH}-\omega _0\mu ^{BH})\sigma -\frac{\gamma ^B}{2}(\mu _0^{BH}-\mu _i^{BH})^2\right] >0. \end{aligned}$$
(76)

Now, we focus on the term \(\frac{\partial q_i^{BH} }{\partial \omega }\).

$$\begin{aligned} \frac{\partial q_i^{BH} }{\partial \omega }=\frac{(\frac{{\alpha ^B}^{\frac{1}{\beta ^B}}}{\beta ^B})^{\beta ^B}((n^{BF}+n^{BH})\beta ^B-1)^{\beta ^B} f(\sigma )}{(n^{BH} (c^{BH}+ (\mu _i^{BH}-\omega \mu _0^{BH})\sigma )+n^{BF} (c^{BF}+\tau ))^{(\beta ^B+2)}}\frac{\partial [(\mu _i^{BH}-\omega _0\mu ^{BH})\sigma ]}{\partial \omega }, \end{aligned}$$
(77)

where \(f(\sigma )\) is given by

$$\begin{aligned} f(\sigma )= & {} (c^{BH}+(\mu _i^{BH}-\omega _0\mu ^{BH})\sigma )(n^{BH}\beta ^B(n^{BF}\beta -1))+n^{BF}(c^{BF}+\tau )(1\nonumber \\&-(n^{BH}+n^{BF})\beta ^B-n^{BH}{\beta ^B}^2). \end{aligned}$$
(78)

Knowing that \(q^{BH}(\sigma )>0\), we can deduce the following:

$$\begin{aligned} \frac{(\frac{{\alpha ^B}^{\frac{1}{\beta ^B}}}{\beta ^B})^{\beta ^B}((n^{BF}+n^{BH})\beta ^B-1)^{\beta ^B} f(\sigma )}{(n^{BH} (c^{BH}+ (\mu _i^{BH}-\omega \mu _0^{BH})\sigma )+n^{BF} (c^{BF}+\tau ))^{(\beta ^B+2)}}>0. \end{aligned}$$
(79)

As shown previously, we focus on and calculate the term \(\frac{\partial [(\mu _i^{BH}-\omega \mu _0^{BH})\sigma ]}{\partial \omega }\).

$$\begin{aligned} \frac{\partial [(\mu _i^{BH}-\omega \mu _0^{BH})\sigma ]}{\partial \omega }&=-\mu _0^{BH}\sigma +(1-\omega )\mu _0^{BH}\frac{\partial \sigma }{\partial \omega } -\frac{2\sigma }{\gamma ^B} \frac{\partial \sigma }{\partial \omega }. \end{aligned}$$
(80)

Assuming \(\sigma >\frac{\partial \sigma }{\partial \omega }\), we obtain \(\mu _0^{BH}\sigma >\mu _0^{BH}\frac{\partial \sigma }{\partial \omega }\), which implies \(\mu _0^{BH}\sigma >(1-\omega )\mu _0^{BH}\frac{\partial \sigma }{\partial \omega }\). Moreover, we know that \(\frac{\partial \sigma }{\partial \omega }>0\). We finally deduce the following:

$$\begin{aligned} \frac{\partial [(\mu _i^{BH}-\omega \mu _0^{BH})\sigma ]}{\partial \omega }&=-\mu _0^{BH}\sigma +(1-\omega )\mu _0^{BH}\frac{\partial \sigma }{\partial \omega } -\frac{2\sigma }{\gamma ^B} \frac{\partial \sigma }{\partial \omega }<0. \end{aligned}$$
(81)

From Eqs. (77), (79) and (81), we obtain

$$\begin{aligned} \frac{\partial q^{BH}}{\partial \omega }>0. \end{aligned}$$
(82)

Now, we analyze \(\frac{\partial P^B}{\partial \omega }-\frac{\partial ((\mu _i^{BH}-\omega _0\mu ^{BH})\sigma )}{\partial \omega }-\frac{\sigma }{\gamma ^B}\), which we denote with \(\phi (\sigma )\).

From \(P^B= \beta ^B \frac{(n^{BH}(c^{BH}+(\mu _i^{BH}-\omega \mu _0^{BH})\sigma )+ n^{BF}(c^{BF}+\tau ))}{((n^{BF}+n^{BH})\beta ^B -1)}\), we calculate

$$\begin{aligned} \frac{\partial P^B}{\partial \omega }=\frac{n^{BH}\beta ^B}{(n^{BH}+n^{BF})\beta ^B -1}\frac{\partial ((\mu _i^{BH}-\omega _0\mu ^{BH})\sigma )}{\partial \omega }. \end{aligned}$$
(83)

We can rewrite \(\phi (\sigma )\) as follows:

$$\begin{aligned} \phi (\sigma )=&\left( \frac{n^{BH}\beta ^B}{(n^{BH}+n^{BF})\beta ^B -1} -1\right) \frac{\partial ((\mu _i^{BH}-\omega _0\mu ^{BH})\sigma )}{\partial \omega } -\frac{\sigma }{\gamma ^B}, \end{aligned}$$
(84)
$$\begin{aligned} \phi (\sigma )=&-\left( \frac{n^{BF}\beta ^B+1}{(n^{BH}+n^{BF})\beta ^B -1}\right) \frac{\partial ((\mu _i^{BH}-\omega _0\mu ^{BH})\sigma )}{\partial \omega } -\frac{\sigma }{\gamma ^B}. \end{aligned}$$
(85)

By replacing Eq. (80) in (85), we obtain

$$\begin{aligned} \phi (\sigma )= \lambda \left[ -\mu _0^{BH}\sigma +(1-\omega )\mu _0^{BH}\frac{\partial \sigma }{\partial \omega }-\frac{\sigma }{\gamma ^B}\frac{\partial \sigma }{\partial \omega }\right] -\lambda \frac{\sigma }{\gamma ^B}\left( \frac{\partial \sigma }{\partial \omega }+1\right) , \end{aligned}$$
(86)

where \(\lambda =-\frac{n^{BF}\beta ^B+1}{(n^{BH}+n^{BF})\beta ^B -1} <0\).

From previous calculations, we know that \(-\mu _0^{BH}\sigma +(1-\omega )\mu _0^{BH}\frac{\partial \sigma }{\partial \omega }-\frac{\sigma }{\gamma ^B}\frac{\partial \sigma }{\partial \omega }<0\). From \(\frac{\partial \sigma }{\partial \omega }>0\), we can deduce that \(\frac{\sigma }{\gamma ^B}\left( \frac{\partial \sigma }{\partial \omega }+1\right) >0\). We thus deduce the following:

$$\begin{aligned} \phi (\sigma )= \lambda \left[ -\mu _0^{BH}\sigma +(1-\omega )\mu _0^{BH}\frac{\partial \sigma }{\partial \omega }-\frac{\sigma }{\gamma ^B}\frac{\partial \sigma }{\partial \omega }\right] -\lambda \frac{\sigma }{\gamma ^B} \left( \frac{\partial \sigma }{\partial \omega }+1\right) >0. \end{aligned}$$
(87)

From Eqs. (77), (76), (82) and (87), we conclude that \(\frac{\partial \pi ^{BH}}{\partial \omega }>0\).

Appendix 8: Other Scenarios and Some Variations of the Illustration

The present section analyzes the sensitivity of our illustration according to the percentage of emissions reduction and the market size in the electricity sector.

Various percentages of emissions reductions In Fig. 3, we analyze the cases in which total domestic emissions are reduced by 10 and 20%. We then show that the higher the emissions reduction is, the higher the profit increase is.

Fig. 3
figure 3

Evolution of profits (M€) in electricity sector for various output-based rates and different levels of emissions reduction (\(z=0.95\), \(z=0.9\) and \(z=0.8\))

Various market sizes in the electricity sector. We analyze the cases in which the market size in the electricity sector is equal to 1000 TWh in Table 10 and 200 TWh in Table 11. Profits in the electricity sector increase by 1.40 and 2.75% (relative to the case under which allowances are auctioned) when the market size is equal to 1000 and 200 TWh, respectively.

Table 10 Illustration of the evolution of permit prices for various output-based rates and under a 1000-TWh market size in the electricity sector
Table 11 Illustration of the evolution of permit prices for various output-based rates and under a 200-TWh market size in the electricity sector

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolaï, JP., Zamorano, J. Windfall Profits Under Pollution Permits and Output-Based Allocation. Environ Resource Econ 69, 661–691 (2018). https://doi.org/10.1007/s10640-016-0096-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10640-016-0096-1

Keywords

JEL Classification

Navigation