Skip to main content
Log in

Peloruside A, a microtubule-stabilizing agent, induces aneuploidy in ovarian cancer cells

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

To ensure proper chromosome segregation, mitosis is tightly regulated by the spindle assembly checkpoint (SAC). Low concentrations of microtubule-stabilizing agents can induce aneuploid populations of cells in the absence of G2/M block, suggesting pertubation of the spindle checkpoint. We investigated the effects of peloruside A, a microtubule-stabilizing agent, on expression levels of several key cell cycle proteins, MAD2, BUBR1, p55CDC and cyclin B1. Synchronized 1A9 ovarian carcinoma cells were allowed to progress through the cell cycle in the presence or absence of peloruside A. Co-immunoprecipitation and Western blotting were used to probe the cell cycle kinetics of MAD2 and BUBR1 dissociation from p55CDC. Using confocal microscopy, we investigated whether premature dissociation of MAD2 and BUBR1 at low (40 nM) but not high (100 nM) concentrations of peloruside A was caused by defects in the attachment of chromosomes to the mitotic spindle. An increased frequency of polar chromosomes was observed at low concentrations of peloruside A, suggesting that an increased frequency of pseudo-metaphase cells, which are not detected by the spindle assembly checkpoint, may be underlying the induction of aneuploidy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APC/C:

Anaphase promoting complex/cyclosome

BUBR1:

Budding uninhibited by benzimidazoles related 1

CENP-E:

Centromere-associated protein-E

CDK1:

Cyclin dependent kinase 1

MAD2:

Mitotic arrest deficient 2

MDA:

Microtubule-destabilizing agent

MSA:

Microtubule-stabilizing agent

MTA:

Microtubule-targeting agent

PELA:

Peloruside A

PTX:

Paclitaxel

SAC:

Spindle assembly checkpoint

References

  1. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265

    Article  CAS  PubMed  Google Scholar 

  2. Dumontet C, Jordan MA (2010) Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 9:790–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rowinsky EK, Eisenhauer EA, Chaudhry V, Arbuck SG, Donehower RC (1993) Clinical toxicities encountered with paclitaxel (Taxol). Semin Oncol 20:1–15

    CAS  PubMed  Google Scholar 

  4. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP–dependent transporters. Nat Rev Cancer 2:48–58

    Article  CAS  PubMed  Google Scholar 

  5. West LM, Northcote PT, Battershill CN (2000) Peloruside A: a potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Organomet Chem 65:445–449

    Article  CAS  Google Scholar 

  6. Hood KA, West LM, Rouwé B, Northcote PT, Berridge MV, Wakefield SJ, Miller JH (2002) Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule stabilizing activity. Cancer Res 62:3356–3360

    CAS  PubMed  Google Scholar 

  7. Gaitanos TN, Buey RM, Díaz F, Northcote PT, Teesdale-Spittle P, Andreu JM, Miller JH (2004) Peloruside A does not bind to the taxoid site on β-tubulin and retains its activity in multidrug-resistant cell lines. Cancer Res 64:5063–5067

    Article  CAS  PubMed  Google Scholar 

  8. Pryor DE, O'Brate A, Bilcer G, Díaz JF, Wang Y, Wang Y, Kabaki M, Jung MK, Andreu JM, Ghosh AK, Giannakakou P, Hamel E (2002) The microtubule stabilizing agent laulimalide does not bind in the taxoid site, kills cells resistant to paclitaxel and epothilones, and may not require its epoxide moiety for activity. Biochemistry 41:9109–9115

    Article  CAS  PubMed  Google Scholar 

  9. Prota AE, Bargsten K, Zurwerra D, Field JJ, Díaz JF, Altmann K-H, Steinmetz MO (2013) Molecular mechanism of action of microtubule-stabilizng agents. Science 339:587–590

    Article  CAS  PubMed  Google Scholar 

  10. Prota AE, Bargsten K, Northcote PT, Marsh M, Altmann K-H, Miller JH, Díaz JF, Steinmetz MO (2014) Structural basis of microtubule stabilization by laulimalide and peloruside A. Angew Chem Int Ed 53:1621–1625

    Article  CAS  Google Scholar 

  11. Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8:379–393

    Article  CAS  PubMed  Google Scholar 

  12. Lara-Gonzalez P, Westhorpe FG, Taylor SS (2012) The spindle assembly checkpoint. Curr Biol 22:R966–R980

    Article  CAS  PubMed  Google Scholar 

  13. Foley EA, Kapoor TM (2013) Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 14:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bharadwaj R, Yu H (2004) The spindle checkpoint, aneuploidy, and cancer. Oncogene 23:2016–2027

    Article  CAS  PubMed  Google Scholar 

  15. Thompson SL, Bakhoum SF, Compton DA (2010) Mechanisms of chromosomal instability. Curr Biol 20:R285–R295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bakhoum SF, Compton DA (2012) Chromosomal instability and cancer: a complex relationship with therapeutic potential. J Clin Invest 122:1138–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zachariae W, Nasmyth K (1999) Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev 13:2039–2058

    Article  CAS  PubMed  Google Scholar 

  18. Peters JM (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7:644–656

    Article  CAS  PubMed  Google Scholar 

  19. Kallio M, Weinstein J, Daum JR, Burke DJ, Gorbsky GJ (1998) Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events. J Cell Biol 141:1393–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sudakin V, Chan GK, Yen TJ (2001) Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 154:925–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Elowe S (2011) Bub1 and BubR1: at the interface between chromosome attachment and the spindle checkpoint. Mol Cell Biol 31:3085–3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen J-G, Horwitz SB (2002) Differential mitotic responses to microtubule-stabilizing and -destabilizing drugs. Cancer Res 62:1935–1938

    CAS  PubMed  Google Scholar 

  23. Chen J-G, Yang C-PH, Cammer M, Horwitz SB (2003) Gene expression and mitotic exit induced by microtubule-stabilizing drugs. Cancer Res 63:7891–7899

    CAS  PubMed  Google Scholar 

  24. Wilmes A, Rawson P, Peng L, McLauchlan D, Northcote PT, Jordan TW, Miller JH (2011) Effects of the microtubule stabilizing agent peloruside A on the proteome of HL-60 cells. Investig New Drugs 29:544–553

    Article  CAS  Google Scholar 

  25. Ikui AE, Yang CP, Matsumoto T, Horwitz SB (2005) Low concentrations of taxol cause mitotic delay followed by premature dissociation of p55CDC from Mad2 and BubR1 and abrogation of the spindle checkpoint, leading to aneuploidy. Cell Cycle 4:1385–1388

    Article  CAS  PubMed  Google Scholar 

  26. Wilmes A, Hanna R, Heathcott R, Northcote PT, Atkinson PH, Bellows DS, Miller JH (2012) Chemical genetic profiling of the microtubule-targeting agent peloruside A in budding yeast Saccharomyces cerevisiae. Gene 497:140–146

    Article  CAS  PubMed  Google Scholar 

  27. Best HA, Matthews JH, Heathcott RW, Hanna R, Leahy DC, Coorey NVC, Bellows DS, Atkinson PH, Miller JH (2013) Laulimalide and peloruside A inhibit mitosis of Saccharomyces cerevisiae by preventing microtubule depolymerisation-dependent steps in chromosome separation and nuclear positioning. Mol BioSyst 9:2842–2852

    Article  CAS  PubMed  Google Scholar 

  28. Ikui AE, Furuya K, Yanagida M, Matsumoto T (2002) Control of localization of a spindle checkpoint protein, Mad2, in fission yeast. J Cell Sci 115:1603–1610

    CAS  PubMed  Google Scholar 

  29. Cimini D, Howell B, Maddox P, Khodjakov A, Degrassi F, Salmon ED (2001) Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J Cell Biol 153:517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weaver BA, Bonday ZQ, Putkey FR, Kops GJ, Silk AD, Cleveland DW (2003) Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. J Cell Biol 162:551–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Singh AJ, Razzak M, Teesdale-Spittle P, Gaitanos TN, Wilmes A, Paterson I, Goodman JM, Miller JH, Northcote PT (2011) Structure-activity studies of the pelorusides: new congeners and semi-synthetic analogues. Org Biomol Chem 9:4456–4466

    Article  CAS  PubMed  Google Scholar 

  32. Zacharaki P, Stephanou G, Demopoulos NA (2013) Comparison of the aneugenic properties of nocodazole, paclitaxel and griseofulvin in vitro. Centrosome defects and alterations in protein expression profiles. J Appl Toxicol 33:869–879

    Article  CAS  PubMed  Google Scholar 

  33. Lee H-S, Lee NC, Grimes BR, Samoshkin A, Kononenko AV, Bansal R, Masumoto H, Earnshaw WC, Kouprinal N, Larionov V (2013) A new assay for measuring chromosome instability (CIN) and identification of drugs that elevate CIN in cancer cells. BMC Cancer 13:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kanakkanthara A, Wilmes A, O'Brate A, Escuin D, Chan A, Gjyrezi A, Crawford J, Rawson P, Kivell B, Northcote PT, Hamel E, Giannakakou P, Miller JH (2011) Peloruside- and laulimalide-resistant human ovarian carcinoma cells have βI-tubulin mutations and altered expression of βII- and βIII-tubulin isotypes. Mol Cancer Ther 10:1419–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chang DC, Xu N, Luo KQ (2003) Degradation of cyclin B is required for the onset of anaphase in mammalian cells. J Biol Chem 278:37865–37873

    Article  CAS  PubMed  Google Scholar 

  36. Brito DA, Rieder CL (2006) Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr Biol 16:1194–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brito DA, Yang Z, Rieder CL (2008) Microtubules do not promote mitotic slippage when the spindle assembly checkpoint cannot be satisfied. J Cell Biol 182:623–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang Z, Loncarek J, Khodjakov A, Rieder CL (2008) Extra centrosomes and/or chromosomes prolong mitosis in human cells. Nat Cell Biol 10:748–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taylor SS, Hussein D, Wang Y, Elderkin S, Morrow CJ (2001) Kinetochore localization and phosphorylation of the mitotic checkpoint components Bub1 and BubR1 are differentially regulated by spindle events in human cells. J Cell Sci 114:4385–4395

    CAS  PubMed  Google Scholar 

  40. Elowe S, Hümmer S, Uldschmid A, Li X, Nigg EA (2007) Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev 21:2205–2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. De Antoni A, Pearson CG, Cimini D, Canman JC, Sala V, Nezi L, Mapelli M, Sironi L, Faretta M, Salmon ED, Musacchio A (2005) The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr Biol 15:214–225

    Article  PubMed  Google Scholar 

  42. Yu H (2006) Structural activation of Mad2 in the mitotic spindle checkpoint: the two-state Mad2 model versus the Mad2 template model. J Cell Biol 173:153–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen RH (2002) BubR1 is essential for kinetochore localization of other spindle checkpoint proteins and its phosphorylation requires Mad1. J Cell Biol 158:487–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morrow CJ, Tighe A, Johnson VL, Scott MI, Ditchfield C, Taylor SS (2005) Bub1 and aurora B cooperate to maintain BubR1-mediated inhibition of APC/CCdc20. J Cell Sci 118:3639–3652

    Article  CAS  PubMed  Google Scholar 

  45. Cimini D, Moree B, Canman JC, Salmon ED (2003) Merotelic kinetochore orientation occurs frequently during early mitosis in mammalian tissue cells and error correction is achieved by two different mechanisms. J Cell Sci 116:4213–4225

    Article  CAS  PubMed  Google Scholar 

  46. Rieder CL, Cole RW, Khodjakov A, Sluder G (1995) The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol 130:941–948

    Article  CAS  PubMed  Google Scholar 

  47. Jordan MA, Toso RJ, Thrower D, Wilson L (1993) Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci U S A 90:9552–9556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barisic M, Sousa RS, Tripathy SK, Magiera MM, Zaytsev AV, Pereira AL, Janke C, Grishchuk EL, Maiato H (2015) Microtubule detyrosination guides chromosomes during mitosis. Science 348:799–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gundersen GG, Khawaja S, Bulinksi JC (1987) Postpolymerization detyrosination of α-tubulin: a mechanism for subcellular differentiation of microtubules. J Cell Biol 105:251–264

    Article  CAS  PubMed  Google Scholar 

  50. Janssen A, Kops GJ, Medema RH (2009) Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc Natl Acad Sci U S A 106:19108–19113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Cancer Society of New Zealand (JHM), Wellington Medical Research Foundation (JHM, PTN), and Victoria University of Wellington (JHM, AC) and a PhD scholarship from the Genesis Oncology Trust of New Zealand (AC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Miller.

Ethics declarations

Conflict of interest

Peter Northcote and John Miller are named on a patent for use of peloruside A as an anticancer agent.

Electronic supplementary material

ESM 1

(DOCX 965 kb)

ESM 2

(DOCX 611 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, A., Singh, A.J., Northcote, P.T. et al. Peloruside A, a microtubule-stabilizing agent, induces aneuploidy in ovarian cancer cells. Invest New Drugs 34, 424–438 (2016). https://doi.org/10.1007/s10637-016-0355-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-016-0355-6

Keywords

Navigation