Skip to main content

Advertisement

Log in

Bortezomib treatment of ovarian cancer cells mediates endoplasmic reticulum stress, cell cycle arrest, and apoptosis

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Bortezomib, an approved drug for the treatment of certain haematological neoplasms, is currently being tested in clinical trials as a potential therapeutic agent against several types of solid cancer, including ovarian cancer. We have analyzed the effect of bortezomib on ovarian cancer cells and tissue explants either as a single agent or in combination with carboplatin, taxol, or TRAIL (tumor necrosis factor-related apoptosis-inducing ligand). Bortezomib alone efficiently induced apoptosis in ovarian cancer cells. Apoptosis was preceded by an upregulation of the endoplasmic reticulum stress sensor ATF3, and increased the expression of cytoplasmic heat shock proteins. Bortezomib enhanced the sensitivity of ovarian cancer cells and tissue explants to an apoptosis-inducing TRAIL receptor antibody by upregulating the TRAIL receptor DR5. In contrast to the synergistic effect observed for TRAIL, the efficacy of the taxol treatment was reduced by bortezomib, and bortezomib inhibited the G2/M phase accumulation of ovarian cancer cells treated with taxol. Bortezomib alone or in combination with taxol induced a cell cycle arrest within the S phase, and downregulation of cdk1, a cyclin-dependent kinase that is necessary for the entry into the M phase. Thus, bortezomib can be regarded as a promising agent for the treatment of ovarian cancer and could either be administered as a single agent or in combination with TRAIL. However, a combination treatment with taxanes may not be beneficial and may even be less effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tobinai K (2007) Proteasome inhibitor, bortezomib, for myeloma and lymphoma. Int J Clin Oncol 12:318–326 doi:10.1007/s10147-007-0695-5

    Article  CAS  PubMed  Google Scholar 

  2. Davies AM, Lara PN Jr, Mack PC, Gandara DR (2007) Incorporating bortezomib into the treatment of lung cancer. Clin Cancer Res 13:4647–4651 doi:10.1158/1078-0432.CCR-07-0334

    Article  CAS  Google Scholar 

  3. Schmid P, Kühnhardt D, Kiewe P, Lehenbauer-Dehm S, Schippinger W, Greil R, Lange W, Preiss J, Niederle N, Brossart P, Freier W, Kümmel S, Van de Velde H, Regierer A, Possinger K (2008) A phase I/II study of bortezomib and capecitabine in patients with metastatic breast cancer previously treated with taxanes and/or anthracyclines. Ann Oncol 19:871–876 doi:10.1093/annonc/mdm569

    Article  CAS  PubMed  Google Scholar 

  4. Aghajanian C, Dizon DS, Sabbatini P, Raizer JJ, Dupont J, Spriggs DR (2005) Phase I trial of bortezomib and carboplatin in recurrent ovarian or primary peritoneal cancer. J Clin Oncol 23:5943–5949 doi:10.1200/JCO.2005.16.006

    Article  CAS  PubMed  Google Scholar 

  5. Ramirez PT, Landen CN Jr, Coleman RL, Milam MR, Levenback C, Johnston TA, Gershenson DM (2008) Phase I trial of the proteasome inhibitor bortezomib in combination with carboplatin in patients with platinum- and taxane-resistant ovarian cancer. Gynecol Oncol 108:68–71 doi:10.1016/j.ygyno.2007.08.071

    Article  CAS  PubMed  Google Scholar 

  6. Ryan DP, O’Neil BH, Supko JG, Rocha Lima CM, Dees EC, Appleman LJ, Clark J, Fidias P, Orlowski RZ, Kashala O, Eder JP, Cusack JC Jr (2006) A Phase I study of bortezomib plus irinotecan in patients with advanced solid tumors. Cancer 107:2688–2697 doi:10.1002/cncr.22280

    Article  CAS  PubMed  Google Scholar 

  7. Dy GK, Thomas JP, Wilding G, Bruzek L, Mandrekar S, Erlichman C, Alberti D, Binger K, Pitot HC, Alberts SR, Hanson LJ, Marnocha R, Tutsch K, Kaufmann SH, Adjei AA (2005) A phase I and pharmacologic trial of two schedules of the proteasome inhibitor, PS-341 (bortezomib, velcade), in patients with advanced cancer. Clin Cancer Res 11:3410–3416 doi:10.1158/1078-0432.CCR-04-2068

    Article  CAS  PubMed  Google Scholar 

  8. Milano A, Iaffaioli RV, Caponigro F (2007) The proteasome: a worthwhile target for the treatment of solid tumours. Eur J Cancer 43:1125–1133 doi:10.1016/j.ejca.2007.01.038

    Article  CAS  PubMed  Google Scholar 

  9. Eltabbakh GH, Awtrey CS (2001) Current treatment for ovarian cancer. Expert Opin Pharmacother 2:109–124 doi:10.1517/14656566.2.1.109

    Article  CAS  PubMed  Google Scholar 

  10. Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163

    Article  CAS  PubMed  Google Scholar 

  11. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310 doi:10.1038/35042675

    Article  CAS  PubMed  Google Scholar 

  12. Van Waes C (2007) Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clin Cancer Res 13:1076–1082 doi:10.1158/1078-0432.CCR-06-2221

    Article  PubMed  Google Scholar 

  13. Abdollahi T (2004) Potential for TRAIL as a therapeutic agent in ovarian cancer. Vitam Horm 67:347–364 doi:10.1016/S0083-6729(04)67018-X

    Article  CAS  PubMed  Google Scholar 

  14. Jordan MA, Kamath K (2007) How do microtubule-targeted drugs work? An overview. Curr Cancer Drug Targets 7:730–742 doi:10.2174/156800907783220417

    Article  CAS  PubMed  Google Scholar 

  15. Mani A, Gelmann EP (2005) The ubiquitin–proteasome pathway and its role in cancer. J Clin Oncol 23:4776–4789 doi:10.1200/JCO.2005.05.081

    Article  CAS  PubMed  Google Scholar 

  16. Zimmermann J, Erdmann D, Lalande I, Grossenbacher R, Noorani M, Fürst P (2000) Proteasome inhibitor induced gene expression profiles reveal overexpression of transcriptional regulators ATF3, GADD153 and MAD1. Oncogene 19:2913–2920 doi:10.1038/sj.onc.1203606

    Article  CAS  PubMed  Google Scholar 

  17. Benz EJ Jr, Nathan DG, Amaravadi RK, Danial NN (2007) Targeting the cell death–survival equation. Clin Cancer Res 13:7250–7253 doi:10.1158/1078-0432.CCR-07-2221

    Article  PubMed  Google Scholar 

  18. Fribley A, Wang CY (2006) Proteasome inhibitor induces apoptosis through induction of endoplasmic reticulum stress. Cancer Biol Ther 5:745–748

    CAS  PubMed  Google Scholar 

  19. Saulle E, Petronelli A, Pasquini L, Petrucci E, Mariani G, Biffoni M, Ferretti G, Scambia G, Benedetti-Panici P, Cognetti F, Humphreys R, Peschle C, Testa U (2007) Proteasome inhibitors sensitize ovarian cancer cells to TRAIL induced apoptosis. Apoptosis 12:635–655 doi:10.1007/s10495-006-0025-9

    Article  CAS  PubMed  Google Scholar 

  20. Koschny R, Walczak H, Ganten TM (2007) The promise of TRAIL-potential and risks of a novel anticancer therapy. J Mol Med 85:923–935 doi:10.1007/s00109-007-0194-1

    Article  CAS  PubMed  Google Scholar 

  21. Fanucchi MP, Fossella FV, Belt R, Natale R, Fidias P, Carbone DP, Govindan R, Raez LE, Robert F, Ribeiro M, Akerley W, Kelly K, Limentani SA, Crawford J, Reimers HJ, Axelrod R, Kashala O, Sheng S, Schiller JH (2006) Randomized phase II study of bortezomib alone and bortezomib in combination with docetaxel in previously treated advanced non-small-cell lung cancer. J Clin Oncol 24:5025–5033 doi:10.1200/JCO.2006.06.1853

    Article  CAS  PubMed  Google Scholar 

  22. Pines J, Rieder CL (2001) Re-staging mitosis: a contemporary view of mitotic progression. Nat Cell Biol 3:E3–E6 doi:10.1038/35050676

    Article  CAS  PubMed  Google Scholar 

  23. Bashir T, Pagano M (2005) Cdk1: the dominant sibling of Cdk2. Nat Cell Biol 7:779–781 doi:10.1038/ncb0805-779

    Article  CAS  PubMed  Google Scholar 

  24. Yu J, Tiwari S, Steiner P, Zhang L (2003) Differential apoptotic response to the proteasome inhibitor Bortezomib [VELCADE, PS-341] in Bax-deficient and p21-deficient colon cancer cells. Cancer Biol Ther 2:694–649

    CAS  PubMed  Google Scholar 

  25. Fribley AM, Evenchik B, Zeng Q, Park BK, Guan JY, Zhang H, Hale TJ, Soengas MS, Kaufman RJ, Wang CY (2006) Proteasome inhibitor PS-341 induces apoptosis in cisplatin-resistant squamous cell carcinoma cells by induction of Noxa. J Biol Chem 281:31440–31447 doi:10.1074/jbc.M604356200

    Article  CAS  PubMed  Google Scholar 

  26. Laframboise S, Chapman W, McLaughlin J, Andrulis IL (2000) p53 mutations in epithelial ovarian cancers: possible role in predicting chemoresistance. Cancer J 6:302–308

    CAS  PubMed  Google Scholar 

  27. Fraser M, Leung B, Jahani-Asl A, Yan X, Thompson WE, Tsang BK (2003) Chemoresistance in human ovarian cancer: the role of apoptotic regulators. Reprod Biol Endocrinol 1:66 doi:10.1186/1477-7827-1-66

    Article  PubMed  Google Scholar 

  28. Colombo N, Van Gorp T, Parma G, Amant F, Gatta G, Sessa C, Vergote I (2006) Ovarian cancer. Crit Rev Oncol Hematol 60:159–179 doi:10.1016/j.critrevonc.2006.03.004

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the generous supply of Velcade, a trademark of Millennium Pharmaceuticals, by Ortho Biotech, Division of Janssen-Cilag GmbH, Neuss, Germany. This work was supported by the Deutsche Forschungsgemeinschaft (DFG BR 3641/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Brüning.

Additional information

Miriam Lenhard and Alexander Burges contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brüning, A., Burger, P., Vogel, M. et al. Bortezomib treatment of ovarian cancer cells mediates endoplasmic reticulum stress, cell cycle arrest, and apoptosis. Invest New Drugs 27, 543–551 (2009). https://doi.org/10.1007/s10637-008-9206-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-008-9206-4

Keywords

Navigation