Skip to main content
Log in

Objective assessment of visual acuity: a refined model for analyzing the sweep VEP

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to develop a simple and reliable method for the objective assessment of visual acuity by optimizing the stimulus used in commercially available systems and by improving the methods of evaluation using a nonlinear function, the modified Ricker model.

Methods

Subjective visual acuity in the normal subjects was measured with Snellen targets, best-corrected, and in some cases also uncorrected and with plus lenses (+ 1 D, + 2 D, + 3 D). In patients, subjective visual acuity was measured best-corrected using the Freiburg Visual Acuity Test. Sweep VEP recordings to 11 spatial frequencies, with check sizes in logarithmically equidistant steps (0.6, 0.9, 1.4, 2.1, 3.3, 4.9, 7.3, 10.4, 18.2, 24.4, and 36.5 cpd), were obtained from 56 healthy subjects aged between 17 and 69 years (mean 42.5 ± 15.3 SD years) and 20 patients with diseases of the lens (n = 6), retina (n = 8) or optic nerve (n = 6). The results were fit by a multiple linear regression (2nd-order polynomial) or a nonlinear regression (modified Ricker model) and parameters compared (limiting spatial frequency (sflimiting) and the spatial frequency of the vertex (sfvertex) of the parabola for the 2nd-order polynomial fitting, and the maximal spatial frequency (sfmax), and the spatial frequency where the amplitude is 2 dB higher than the level of noise (sfthreshold) for the modified Ricker model.

Results

Recording with 11 spatial frequencies allows a more accurate determination of acuities above 1.0 logMAR. Tuning curves fitted to the results show that compared to the normal 2nd-order polynomial analysis, the modified Ricker model is able to describe closely the amplitudes of the sweep VEP in relation to the spatial frequencies of the presented checkerboards. In patients with a visual acuity better than about 0.5 (decimal), the predicted acuities based on the different parameters show a good match of the predicted visual acuities based on the models established in healthy volunteers to the subjective visual acuities. However, for lower visual acuities, both models tend to overestimate the visual acuity (up to ~ 0.4 logMAR), especially in patients suffering from AMD.

Conclusions

Both models, the 2nd-order polynomial and the modified Ricker model performed equally well in the prediction of the visual acuity based on the amplitudes recorded using the sweep VEP. However, the modified Ricker model does not require the exclusion of data points from the fit, as necessary when fitting the 2nd-order polynomial model making it more reliable and robust against outliers, and, in addition, provides a measure for the noise of the recorded results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Most mathematical software packages include the Lambert W function and implementations for several programming languages are available. Barry et al. [1] compare several approximations of the Lambert W function.

  2. Interactive demonstration of fitting the sweep VEP using the 2nd-order polynomial model and the modified Ricker model: https://strator1.github.io/SweepVEP.

References

  1. Barry D, Parlange J-Y, Li L, Prommer H, Cunningham C, Stagnitti F (2000) Analytical approximations for real values of the Lambert W-function. Math Comput Simul 53(1–2):95–103

    Article  Google Scholar 

  2. Bach M (1996) The Freiburg Visual Acuity test–automatic measurement of visual acuity. Optom Vis Sci 73(1):49–53

    Article  CAS  Google Scholar 

  3. Incesu AI, Sobacı G (2011) Malingering or simulation in ophthalmology-visual acuity. Int J Ophthalmol 4(5):558–566

    PubMed  PubMed Central  Google Scholar 

  4. Jeon J, Oh S, Kyung S (2012) Assessment of visual disability using visual evoked potentials. BMC Ophthalmol 12(1):36

    Article  Google Scholar 

  5. Almoqbel F, Leat SJ, Irving E (2008) The technique, validity and clinical use of the sweep VEP. Ophthalmic Physiol Opt 28(5):393–403

    Article  Google Scholar 

  6. Campbell FW, Maffei L (1970) Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. J Physiol 207(3):635–652

    Article  CAS  Google Scholar 

  7. Harter MR, White CT (1970) Evoked cortical responses to checkerboard patterns: effect of check-size as a function of visual acuity. Electroencephalogr Clin Neurophysiol 28(1):48–54

    Article  CAS  Google Scholar 

  8. Hagemann D, Hewig J, Walter C, Naumann E (2008) Skull thickness and magnitude of EEG alpha activity. Clin Neurophysiol 119(6):1271–1280

    Article  Google Scholar 

  9. Hajek A, Zrenner E (1988) Improved objective visual assessment with visual evoked cortical potentials by rapid pattern stimuli sequences of different spatial frequency. Fortschr Ophthalmol 85(5):550–554

    CAS  PubMed  Google Scholar 

  10. Kurtenbach A, Langrová H, Messias A, Zrenner E, Jägle H (2013) A comparison of the performance of three visual evoked potential-based methods to estimate visual acuity. Doc Ophthalmol 126(1):45–56

    Article  Google Scholar 

  11. Ricker WE (1954) Stock and recruitment. J Fish Res Board Can 11(5):559–623

    Article  Google Scholar 

  12. Persson L, Leonardsson K, de Roos AM, Gyllenberg M, Christensen B (1998) Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model. Theor Popul Biol 54(3):270–293

    Article  CAS  Google Scholar 

  13. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, Vaegan (2010) ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 120(1):111–119

    Article  Google Scholar 

  14. Smith G (1982) Ocular defocus, spurious resolution and contrast reversal. Ophthalmic Physiol Opt 2(1):5–23

    CAS  PubMed  Google Scholar 

  15. Bach M (2007) The Freiburg Visual Acuity Test-variability unchanged by post hoc re-analysis. Graefes Arch Clin Exp Ophthalmol 245(7):965–971

    Article  Google Scholar 

  16. Fahle M, Bach M (2006) Basics of the VEP. In: Heckenlively J, Arden G (eds) Principles and practice of clinical electrophysiology of vision. MIT Press Cambridge, London, pp 207–234

    Google Scholar 

  17. Michelson AA (1927) Studies in optics. University of Chicago Press, Chicago

    Google Scholar 

  18. Bach M, Maurer JP, Wolf ME (2008) Visual evoked potential-based acuity assessment in normal vision, artificially degraded vision, and in patients. Br J Ophthalmol 92(3):396–403

    Article  CAS  Google Scholar 

  19. American Clinical Neurophysiology Society (2006) Guideline 5: guidelines for standard electrode position nomenclature. J Clin Neurophysiol 23(2):107–110

    Article  Google Scholar 

  20. Ruchkin DS (1965) An analysis of average response computations based upon aperiodic stimuli. IEEE Trans Biomed Eng 12(2):87–94

    Article  CAS  Google Scholar 

  21. Heine S, Rüther K, Isensee J, Zrenner E (1999) Clinical significance of objective vision assessment using visually evoked cortical potentials induced by rapid pattern sequences of different spatial frequency. Klin Monbl Augenheilkd 215(3):175–181

    Article  CAS  Google Scholar 

  22. Scholkmann F, Boss J, Wolf M (2012) An efficient algorithm for automatic peak detection in noisy periodic and quasi-periodic signals. Algorithms 5(4):588–603

    Article  Google Scholar 

  23. Strasser T, Wilke R, Messias A, Zrenner E (2008) Erg explorer: a software for post-processing, analysing, and reporting of electrophysiological data. Acta Ophthalmol. https://doi.org/10.1111/j.1755-3768.2008.4254.x

    Article  Google Scholar 

  24. Strasser T, Peters T, Jagle H, Zrenner E, Wilke R (2010) An integrated domain specific language for post-processing and visualizing electrophysiological signals in Java. In: Conf. proc. IEEE eng. med. biol. soc., vol 1, pp 4687–90

  25. Lambert JH (1758) Observationes variae in mathesin puram. Acta Helv Physico-Mathematico-Anatomico-Botanico-Medica 3:128–168

    Google Scholar 

  26. Cook RD (1979) Influential observations in linear regression. J Am Stat Assoc 74(365):169–174

    Article  Google Scholar 

  27. Cook RD (1977) Detection of influential observation in linear regression. Technometrics 19(1):15

    Google Scholar 

  28. Wesemann W (2002) Sehschärfebestimmung mit Freiburger Visustest, Bailey-Lovie-Tafel und Landoltring-Tafel. Klin Monbl Augenheilkd 219(9):660–667

    Article  Google Scholar 

  29. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Article  CAS  Google Scholar 

  30. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160

    Article  CAS  Google Scholar 

  31. Chhapola V, Kanwal SK, Brar R (2014) Reporting standards for Bland-Altman agreement analysis in laboratory research: a cross-sectional survey of current practice. Ann Clin Biochem Int J Biochem Lab Med 52(3):382–386

    Article  Google Scholar 

  32. Grilo LM, Grilo HL (2012) Comparison of clinical data based on limits of agreement. Biom Lett 49(1):45–56

    Article  Google Scholar 

  33. Georgeson MA, Sullivan GD (1975) Contrast constancy: deblurring in human vision by spatial frequency channels. J Physiol 252(3):627–656

    Article  CAS  Google Scholar 

  34. Campbell FW, Robson JG (1968) Application of Fourier analysis to the visibility of gratings. J Physiol 197(3):551–566

    Article  CAS  Google Scholar 

  35. Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 187(3):517–552

    Article  CAS  Google Scholar 

  36. Singh KD, Smith AT, Greenlee MW (2000) Spatiotemporal frequency and direction sensitivities of human visual areas measured using fMRI. Neuroimage 12(5):550–564

    Article  CAS  Google Scholar 

  37. Wolf M (2006) Objektive Visusbestimmung mit Visuell Evozierten Potentialen. Albert-Ludwigs-Universität Freiburg im Breisgau

  38. Dehaene S (2003) The neural basis of the Weber–Fechner law: a logarithmic mental number line. Trends Cogn Sci 7(4):145–147

    Article  Google Scholar 

  39. Stothart G, Tales A, Hedge C, Kazanina N (2014) Double peaked P1 visual evoked potentials in healthy ageing. Clin Neurophysiol 125(7):1471–1478

    Article  CAS  Google Scholar 

  40. Tyler CW, Apkarian P, Levi DM, Nakayama K (1979) Rapid assessment of visual function: an electronic sweep technique for the pattern visual evoked potential. Invest Ophthalmol Vis Sci 18(7):703–713

    CAS  PubMed  Google Scholar 

  41. Mannos J, Sakrison D (1974) The effects of a visual fidelity criterion of the encoding of images. IEEE Trans Inf Theory 20(4):525–536

    Article  Google Scholar 

  42. Stromeyer CF, Klein S (1974) Spatial frequency channels in human vision as asymmetric (edge) mechanisms. Vis Res 14(12):1409–1420

    Article  Google Scholar 

  43. Bellows TS (1981) The descriptive properties of some models for density dependence. J Anim Ecol 50(1):139

    Article  Google Scholar 

  44. Tyler CW, Apkarian P, Levi DM, Nakayama K (1979) Rapid assessment of visual function: an electronic sweep technique for the pattern visual evoked potential. Investig Ophthalmol Vis Sci 18(7):703–713

    CAS  Google Scholar 

  45. Tyler CW, Apkarian P, Nakayama K (1978) Multiple spatial-frequency tuning of electrical responses from human visual cortex. Exp Brain Res 33(3–4):535–550

    CAS  PubMed  Google Scholar 

  46. Ridder WH (2004) Methods of visual acuity determination with the spatial frequency sweep visual evoked potential. Doc Ophthalmol 109(3):239–247

    Article  Google Scholar 

  47. Ridder WH, Tong A, Floresca T (2012) Reliability of acuities determined with the sweep visual evoked potential (sVEP). Doc Ophthalmol 124(2):99–107

    Article  Google Scholar 

  48. Ridder WH, McCulloch D, Herbert AM (1998) Stimulus duration, neural adaptation, and sweep visual evoked potential acuity estimates. Investig Ophthalmol Vis Sci 39(13):2759–2768

    Google Scholar 

  49. Wesemann W (2002) Sehschärfebestimmung mit freiburger visustest, Bailey-Lovie-Tafel und Landoltring-Tafel. Klin Monbl Augenheilkd 219(9):660–667

    Article  Google Scholar 

  50. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Mizota A, Tormene AP (2016) ISCEV standard for clinical visual evoked potentials: (2016 update). Doc Ophthalmol 133(1):1–9

    Article  Google Scholar 

  51. Husain AM, Hayes S, Young M, Shah D (2009) Visual evoked potentials with CRT and LCD monitors: when newer is not better. Neurology 72(2):162–164

    Article  Google Scholar 

  52. Shao J (1993) Linear model selection by cross-validation. J Am Stat Assoc 88(422):486–494

    Article  Google Scholar 

  53. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI’95 proceedings of the 14th international joint conference on Artificial intelligence, vol 2, pp 1137–1145

  54. Rosner B (1982) Statistical methods in ophthalmology: an adjustment for the intraclass correlation between eyes. Biometrics 38(1):105

    Article  CAS  Google Scholar 

  55. Zhou P, Zhao MW, Li XX, Hu XF, Wu X, Niu LJ, Yu WZ, Xu XL (2008) A new method of extrapolating the sweep pattern visual evoked potential acuity. Doc Ophthalmol 117(2):85–91

    Article  Google Scholar 

  56. Arditi A, Cagenello R (1993) On the statistical reliability of letter-chart visual acuity measurements. Investig Ophthalmol Vis Sci 34(1):120–129

    CAS  Google Scholar 

  57. Bailey IL, Jackson AJ (2016) Changes in the clinical measurement of visual acuity. J Phys: Conf Ser 772(1):012046

    Google Scholar 

  58. Hauser B, Ochsner H, Zrenner E (1992) Der „Blendvisus” - Teil 1: physiologische Grundlagen der Visusänderung bei steigender Testfeldleuchtdichte. Klin Monbl Augenheilkd 200(02):105–109

    Article  CAS  Google Scholar 

  59. Katsumi O, Arai M, Wajima R, Denno S, Hirose T (1996) Spatial frequency sweep pattern reversal VER acuity vs Snellen visual acuity: effect of optical defocus. Vis Res 36(6):903–909

    Article  CAS  Google Scholar 

  60. Hoffmann MB, Brands J, Behrens-Baumann W, Bach M (2017) VEP-based acuity assessment in low vision. Doc Ophthalmol 135(3):209–218

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported partially by a scholarship to TS from the Tistou and Charlotte Kerstan Foundation and through the fortüne-Programme of the Faculty of Medicine, University of Tuebingen (Grant number: 2188-0-0). We thank Prof. Dr. Michael Bach for the fruitful discussion of the modified Ricker model and the suggestion to study the distribution of the shape parameter of the generalized Ricker model. Finally, we thank the two anonymous reviewers whose suggestions and comments greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Strasser.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Statements of human rights

The protocol for this study was approved by the Institutional Review Board of the medical faculty of the University of Tuebingen. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Statement on the welfare of animals

Not applicable.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strasser, T., Nasser, F., Langrová, H. et al. Objective assessment of visual acuity: a refined model for analyzing the sweep VEP. Doc Ophthalmol 138, 97–116 (2019). https://doi.org/10.1007/s10633-019-09672-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-019-09672-z

Keywords

Navigation