Skip to main content

Advertisement

Log in

Correlation between N2 amplitude of multifocal ERGs and retinal sensitivity and retinal nerve fiber layer thickness in glaucomatous eyes

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

To determine whether there are significant correlations between the N2 amplitude of the multifocal electroretinograms (mfERGs) and the retinal sensitivity and retinal nerve fiber layer (RNFL) thickness in glaucomatous and normal eyes.

Methods

Thirty-eight glaucomatous and 11 normal eyes were studied. The mfERGs were elicited by red stimuli presented on a blue background. The responses from the central five elements within a 20° stimulated area were analyzed. The retinal sensitivity was determined by Humphrey Field Analyzer and the RNFL thickness by spectral-domain optical coherence tomography. The correlations between the N2 amplitude and the retinal sensitivity and the RNFL thickness were calculated.

Results

The N2 amplitude was significantly smaller in the glaucomatous eyes than the normal eyes in all areas (P < 0.05). There was a significant correlation between the N2 amplitude and the retinal sensitivity (1/Lambert linear unit) of the HFA for the superior retina (r = 0.36, P = 0.01), for the central retina (r = 0.54, P < 0.0001), and for the inferior retina (r = 0.51, P = 0.0001). There were significant correlations between the N2 amplitude and the RNFL thicknesses in the superior retina (r = 0.49, P = 0.0003), the central retina (r = 0.79, P < 0.0001), and the inferior retina (r = 0.52, P = 0.0001) for both normal and glaucomatous eyes.

Conclusions

These results indicate that the activity of the retinal ganglion cells contribute to the amplitude of the N2 of the mfERGs and thus can be used as an objective monitor of retinal ganglion cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Quigley HA, Addicks EM, Green WR (1982) Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischaemic neuropathy, papilloedema, and toxic neuropathy. Arch Ophthalmol 100:135–146

    Article  CAS  PubMed  Google Scholar 

  2. Quigley HA, Dunkelberger GR, Green WR (1989) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107:453–464

    Article  CAS  PubMed  Google Scholar 

  3. Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL 3rd (1999) The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Investig Ophthalmol Vis Sci 40:1124–1136

    CAS  Google Scholar 

  4. Hood DC, Seiple W, Holopigian K, Greenstein V (1997) A comparison of the components of the multifocal and full-field ERGs. Vis Neurosci 14:533–544

    Article  CAS  PubMed  Google Scholar 

  5. Kaneko M, Machida S, Hoshi Y, Kurosaka D (2014) Alterations of photopic negative response of multifocal electroretinogram in patients with glaucoma. Curr Eye Res 40:77–86

    Article  PubMed  Google Scholar 

  6. Hasegawa S, Takagi M, Usui T, Takada R, Abe H (2000) Waveform changes of the first-order multifocal electroretinogram in patients with glaucoma. Investig Ophthalmol Vis Sci 41:1597–1603

    CAS  Google Scholar 

  7. Rao A, Singh AK, Mukherjee S, Chowdhury M (2015) Comparing focal and global responses on multifocal electroretinogram with retinal nerve fiber layer thickness by spectral domain optical coherence tomography in glaucoma. Br J Ophthalmol 99:500–507

    Article  PubMed  Google Scholar 

  8. Rangaswamy NV, Hood DC, Frishman LJ (2003) Regional variations in local contributions to the primate photopic flash ERG: revealed using the slow-sequence mfERG. Investig Ophthalmol Vis Sci 44:3233–3247

    Article  Google Scholar 

  9. Kondo M, Kurimoto Y, Sakai T, Koyasu T, Miyata K, Ueno S, Terasaki H (2008) Recording focal macular photopic negative response (PhNR) from monkeys. Investig Ophthalmol Vis Sci 49:3544–3550

    Article  Google Scholar 

  10. Rangaswamy NV, Shirato S, Kaneko M, Digby BI, Robson JG, Frishman LJ (2007) Effects of spectral characteristics of ganzfeld stimuli on the photopic negative response (PhNR) of the ERG. Investig Ophthalmol Vis Sci 48:4818–4828

    Article  Google Scholar 

  11. Xiaoli S, Lina H, Ning F, Jing H (2013) Relationship among photopic negative response, retinal nerve fiber layer thickness, and visual field between normal and POAG eyes. ISRN Opthalmol 2011:182021

    Google Scholar 

  12. Pagliara MM, Lepore D, Balestrazzi E (2008) The role of OCT in glaucoma management. Prog Brain Res 173:139–148

    Article  PubMed  Google Scholar 

  13. Anderson DR, Patella VM (1999) Automated Static Perimetry, 2nd edn. Mosby, St.Louis

    Google Scholar 

  14. Machida S, Toba Y, Ohtaki A, Gotoh Y, Kaneko M, Kurosaka D (2008) Photopic negative response of focal electroretinograms in glaucomatous eyes. Investig Ophthalmol Vis Sci 49:5636–5644

    Article  Google Scholar 

  15. Rangaswamy NV, Frishman LJ, Dorotheo EU, Schiffman JS, Bahrani HM, Tang RA (2004) Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacological blockade of inner retina. Investig Ophthalmol Vis Sci 45:3827–3837

    Article  Google Scholar 

  16. Garway-Heath DF, Poinoosawmy D, Fizke FW, Hitchings RA (2000) Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 113:325–332

    Google Scholar 

  17. Hood DC, Kardon RH (2007) A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res 26:688–710

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hood DC, Anderson SC, Wall M, Kardon RH (2007) Structure versus function in glaucoma: an application of a linear model. Investig Ophthalmol Vis Sci 48:3662–3668

    Article  Google Scholar 

  19. Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Investig Ophthalmol Vis Sci 42:514–522

    CAS  Google Scholar 

  20. Machida S, Gotoh Y, Toba Y, Ohtaki A, Kaneko M, Kurosaka D (2008) Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes. Investig Ophthalmol Vis Sci 49:2201–2207

    Article  Google Scholar 

  21. Machida S, Tamada K, Oikawa T, Yokoyama D, Kaneko M, Kurosaka D (2010) Sensitivity and specificity of photopic negative response of focal electroretinogram to detect glaucomatous eyes. Br J Ophthalmol 94:202–208

    Article  CAS  PubMed  Google Scholar 

  22. Machida S, Tamada K, Oikawa T, Gotoh Y, Nishimura T, Kaneko M, Kurosaka D (2011) Comparison of photopic negative response of full-field and focal electroretinograms in detecting glaucomatous eyes. J Ophthalmol 2011:564131

    Article  PubMed Central  PubMed  Google Scholar 

  23. Nakamura H, Hangai M, Mori S, Mori S, Hirose F, Yoshimura N (2011) Hemispherical focal macular photopic negative response and macular inner retinal thickness in open angle glaucoma. Am J Ophthalmol 151:494–506

    Article  PubMed  Google Scholar 

  24. Machida S, Kaneko M, Kurosaka D (2015) Regional variations in correlation between photopic negative response of focal electoretinograms and ganglion cell complex in glaucoma. Curr Eye Res 40:439–449

    Article  CAS  PubMed  Google Scholar 

  25. Drasado N (1989) Receptive field densities of the ganglion cells of the human retina. Vis Res 29:985–988

    Article  Google Scholar 

  26. Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300:5–25

    Article  CAS  PubMed  Google Scholar 

  27. Gotoh Y, Machida S, Tazawa Y (2004) Selective loss of the photopic negative response in patients with optic nerve atrophy. Arch Ophthalmol 122:341–346

    Article  PubMed  Google Scholar 

  28. Medeiros FA, Zangwill LM, Bowd C, Mansouri K, Weinreb RN (2012) The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. Investig Ophthalmol Vis Sci 53:6939–6946

    Article  Google Scholar 

  29. Satomi A, Sano N, Kawabata H, Adachi-Usami E (1997) Use of multifocal electroretinography to evaluate eyes with glaucoma. Nihon Ganka Kiyo (Folia Ophthalmol Jpn) 48:583–587

    Google Scholar 

  30. Okano M, Naoi N, Arai M, Maruiwa F, Nakazaki S, Yokoyama A, Kai M (1999) Multifocal electroretinograms in eyes with glaucoma. Nihon Ganka Kiyo (Folia Ophthalmol Jpn) 50:443–448

    Google Scholar 

  31. Hood DC, Greenstein VC, Holopigian K, Bauer R, Firoz B, Liebmann JM, Odel JG, Ritch R (2000) An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Investig Ophthalmol Vis Sci 41:1570–1579

    CAS  Google Scholar 

  32. Sakemi F, Yoshii M, Okisaka S (2000) Electrophysiologic findings in the early stage of primary open angle glaucoma. Nihon Ganka Kiyo (Folia Ophthalmol Jpn) 51:573–579

    Google Scholar 

  33. Kobayashi M, Tazawa Y, Haga-Sano M, Nabeshima T, Murai K (2004) Changes in the s-Wave of multifocal electroretinograms in eyes with primary open-angle glaucoma. Jpn J Ophthalmol 48:208–214

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gen Miura.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or nonfinancial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, F., Miura, G., Shirato, S. et al. Correlation between N2 amplitude of multifocal ERGs and retinal sensitivity and retinal nerve fiber layer thickness in glaucomatous eyes. Doc Ophthalmol 131, 197–206 (2015). https://doi.org/10.1007/s10633-015-9519-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-015-9519-5

Keywords

Navigation